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Preface 

My objective in this monograph is to provide a mathematically rigorous 
account of the handling of geometrical singularities in space-time manifolds 
that will be sufficient to bring newcomers to the field into touch with current 
research. Some new material and new proofs are included. Throughout I 
have made an effort to bring results and their proofs, new or from the 
literature, into a rigorous common accord and a natural juxtaposition. By 
this means a clear theme of development is apparent, but the standardiza- 
tion of notation and argument permit the text to be used as a reference work 
because of the detailed labeling of subsections and the large number of 
cross-references. 

The readers will, I hope, include nonspecialists as well as those already 
having an interest in space-time theory. To differential or global geometers 
we can offer a way of using fibre bundles to study manifold singularities 
that develops to a definite and exciting physical application; it is well within 
their reach because the required background physics is very slight and amply 
covered in the text. The first part is directed to astronomers and physicists 
without some knowledge of modern differential geometry but who wish to 
grasp the current definition and classification of space-time singularities. 
This part reviews necessary material on topology, manifolds, Lie groups, 
fibre bundles, and connections; it omits all proofs but substitutes worked 
examples to illustrate most of the definitions. So Part I can either be scanned 
for unfamiliar topics or referred to for definitions and examples during a 
study of the sequel. Since all but elementary definitions are included, this 
paper is self-contained. 

The first half is concerned with the geometry of manifolds with a con- 
nection and of the fibre bundles related to them; specialization to space- 
time manifolds is deferred to Part IlL A connection on a manifold is equiva- 
lent to having well-defined covariant differentiation or parallel transport. 
Such extra structure is possessed by a space-time manifold by virtue of its 
pseudo-Riemannian metric tensor field, which always determines the unique 
Levi-Civith connection. Our story begins in 1971, when B. G. Schmidt used 
this connection to effect a completion that incorporates singularities as 
extra points in an extended space-time. His process is efficient and attractive: 
the frame bundle is metrized, Cauchy completed, and then factored by its 
structure group, whose action extends uniquely to the completion. We 
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accumulate general properties of the spaces involved and subsequently 
concentrate on their role in space-time theory. The uniqueness is of course 
advantageous in defining singularities, a notoriously difficult thing in space- 
times. Their derivation from the connection assures us of physical signifi- 
cance, for in cosmological models it is the disposition of matter that deter- 
mines the curvature of the connection. Moreover, it turns out that the 
boundary points in the completed space-time are typically endpoints of 
curves on which the curvature is without limit. However, drawbacks arise 
because the completion need only be a topological space of non-Hausdorff 
type: we lose the manifold structure and usual separation properties for 
events near the edge. So we consider modifications that remove some of 
the unphysical identifications among singularities. One of these modifica- 
tions, due to C. J. S. Clarke, appears to meet most of the immediate require- 
ments and provides our tale with an unexpected twist. To firmly grasp just 
what goes wrong with Schmidt's original completion, we make a detailed 
study of a simple class of space-times that yield unwanted identifications of 
singularities. We end with the currently accepted classification scheme for 
singularities and summarize the position as it appears after the Eighth 
International Conference on General Relativity and Gravitation (GR8), 
held in August 1977. 

Most of the work on this study was done during a sabbatical year 
1976-1977 at the International Center for Theoretical Physics, Trieste, 
Italy, where a course of lectures on the material was given. I wish to thank 
the director, Abdus Salam, for his encouragement and interest, and his 
staff in the ICTP Library and Publications Office for their invaluable sup- 
port. My stay in Trieste was made possible by the award of a Royal Society 

European Science Exchange Programme Fellowship. I am indebted to the 
Royal Society for this and for a travel grant to attend the GR8 Conference 
in Canada, where I was kindly supported by the Society for General Rela- 
tivity and Gravitation. I am grateful to Professor Salam, the IAEA, and 
UNESCO for hospitality in Trieste and for a travel grant to make the visit. 
I have consulted too many people for due acknowledgment to be given 
here; in fact many of the workers mentioned in the text have kindly responded 
to queries with letters and preprints. However, in particular, C. J. S. Clarke 
has been unstintingly helpful throughout, and M. J. Slupinski helped revise 
the final draft and collaborated on the preparation of Section III.4.4. Finally, 
many people have been subjected to lectures on the material (at ICTP and 
Lancaster) or to seminars on space-time completions (in Europe and North 
America) during the last year or so, and their comments and queries have 
led to improvements in this text. I am pleased to be able to acknowledge 
these sources of help in organizing the contents, but I remain fully responsible 
for any remaining errors. 



Part I. Background with Examples 

The material that it is convenient to have available for reference in the 
sequel we gather under five section headings: (1) topology, (2) manifolds, 
(3) Lie groups, (4) fibre bundles, and (5) connections. 

For topology, which pertains mainly to separation and convergence 
properties, conveniently readable and widespread references are Kelley [39] 
and Dieudonn6 [14]. Little in the way of amplification seems necessary for 
that section. 

Differential geometry is covered, though rather tersely for physicists, 
in Kobayashi and Nomizu [41]. The texts by Bishop and Crittenden [4] 
and Brickell and Clark [8] deal with similar material but contain more 
breathing spaces in the exposition and more actively encourage an intuitive 
feel for the subject. A geometrically motivated account of manifolds, their 
curvature, and connections is given in Dodson and Poston [16], which 
begins with vector spaces and proceeds to a rigorous formulation of rela- 
tivistic space-time. Our notation follows this text when it is convenient; 
otherwise it is similar to that in the former books. The end or absence of a 
proof is signified by [].  

1. TOPOLOGY 

By the term space we always mean a topological space, perhaps also 
having additional structure that is plain from the context: A map between 
spaces, denoted by f say, will be represented as 

f :  X---~ Y: xr--~ f ( x )  

when f has domain X and it sends the arbitrary element x E X to f ( x )  e Y. 
Moreover, we shall use the notation 

f ' -  : sub Y---~ sub X: Br--~ {x ~ X l f ( x )  ~ B} 

for the induced map on subsets of Y when the image of f is Y. Thus we 
reserve the symbol f - 1  for the case whenf i s  a bijection and f - 1  is its inverse. 
The identity map on any space X is denoted Ix. 

1.1. A space is called 
(i) To if for each pair of distinct elements from it there is a neighbor- 

hood of one to which the other does not belong; 
(ii) T1 if each set consisting of a single point is closed; 
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(iii) I"2 or Hausdorff if whenever x and y are distinct elements from it 
there exist disjoint neighborhoods of x and y. Hence metric spaces 
are always T2 spaces. 

1.2. Every subspace of a T1 [respectively, Tz] space is a T1 [respectively, 
I"2] space. �9 

1.3. For any semimetric space (X, p) we have the equivalences X is T2 ~ X 
is T1 r p is a metric. �9 
1.4. Every convergent sequence in a Tz space has a unique limit. �9 

1.5. Let g, f :  X-+ Y be continuous maps with Y a T2 space. Then 
{x E X l f ( x  ) = g(x)} is dosed; if it is also dense in X, t h e n f  = g. �9 

1.6. Let f :  X - +  Y be continuous with X a T2 space. Then graph 
f =  ((x, f(x))~ X • Y} is dosed in the product topology and f ' - (y)  is 
closed in X for all y ~ Y. �9 

1.7. A space is called 

(i) regular if for any subset A and point x ~ A there exist disjoint 
open sets containing A and x; 

(ii) T3 if regular and T~; 
(iii) normal if given any two disjoint closed subsets there are disjoint 

open subsets containing them; 
(iv) T~ if normal and T1. 

1.8. Every semimetric space is regular and normal but not necessarily 
Hausdorff. �9 

1.9. A map f :  X - +  Y between metric spaces (X, d) and (Y, d') is called 
uniformly continuous if(V~ > 0)(33 > 0): 

d(x, y) < 3 ~ d'( f(x) , f(y))  < , 

1.10. Let A be a dense subset of a metric space (X, d) and f a uniformly 
continuous map of A into a complete metric space (Y, d'). Then there exists 
a uniformly continuous map f :  X--* Y, coinciding with f i n  A. �9 
1.11. Let (X, d), (X, d') be metric spaces having the same underlying space. 
Then we have the following: 

(i) I f  Ix is a homeomorphism, then the d-topology coincides with the 
d'-topology for X. 

(ii) I f  Ix is uniformly continuous (with a uniformly continuous inverse) 
between (X, d) and (X, d'), then the Cauchy sequences for d and 

d' agree. �9 
In case (i) we call d and d' topologically equivalent distances, and in case (ii) 
we call them uniformly equivalent; from 1.9 the latter implies the former. 

1.12. Let A be a subset of a topological space X. We shall use the following 
notation: 
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(i) int (A) for the interior of  A, the largest open subset of  A; 
(ii) A c for the closure of  A, the smallest dosed set containing A; 

(iii) .4 for the topological boundary of  A, the set A c n (XIA) ~. 

We recall a few properties. 

(a) A i s o p e n ~ - i n t ( A )  = A ~ : ~ A n A =  ~.  
(b) A is closed ~r A G A -~- A contains its limit points. 
(c) (XIA) c = X/int (A). 
(d) AC\int (A) = A. 
(e) A •.4 = A ~ 
(f) A\.4 = int (A). �9 

1.13. A covering space of a connected, locally arcwise connected topological 
space X, is a connected space E such that 

(i) there exists a projection p: E-+ X; 
(ii) for all x ~ X there exists a connected open neighborhood U of x 

such that each connected component p'-(U)' ofp*-(U) is open in 
E and homeomorphic to U by the restriction o fp :p~(U)  ' ~_ U. 

A covering space is called a universal covering space if  it is simply 
connected. 

I f  X is a manifold, then every covering space has a unique manifold 
structure that makes the projection differentiable (cf. 4.6). �9 

Two covering spaces p:  E ~ X, p ' :  E '  ~ X are isomorphic if  there 
exists a homeomorphismf :  E ~ E' such that p '  o f  = p. 

Note that we use ~ to denote that two spaces are homeomorphic, 
that is, topologically equivalent. We shall use 7 to denote a stronger equiva- 
lence that is of  interest when additional structure is present in the spaces. 
For  example, in the case of  metric spaces (X, d), (Y, d'), the existence of a 
homeomorphism (X ~ Y) that is also an isometry will be indicated by 
X ~ Y. Similarly in the case of  manifolds M, M '  (cf. Section 2) if their 
underlying topological spaces are homeomorphic (M ~ M' )  via a map f 
that is also a diffeomorphism ( f  and f - 1  are continuously differentiable), 
then we write M ~ M' .  

1.14. Paracompaetness. An open covering of a topological space X is a family 
F of open sets IV such that 

x - - U w  
W~F 

This family is called locally finite i f  for all x e X there is an open set Wx 
containing x and such that 

{ W e F I W n  Wx r z }  

is finite. The space X is paracompact if every open covering F of X has a 



398 Dodson 

locally finite open refinement H ~ F; that means that H is to be an open 
covering of X with 

(VVeH)(3W~F):  V ~ W 

I t  is known that all metric spaces are paracompact.  �9 

2. M A N I F O L D S  

By the term manifold we shall mean a finite-dimensional, smooth real 
manifold. For  the standard manifolds like •, R ", and S 1 and their products 
we shall assume atlases derived from the identity map on the relevant ~m 
that contains them. We recall that every point x in a topological n-manifold 
M has a neighborhood homeomorphic to an open set in R ". For  a smooth 
n-manifold M, each such x also possesses a tangent vector space TxM; 
these tangent spaces can be collected to form a smooth 2n-manifold, the 
tangent bundle TM, with underlying set Ux~M TxM and canonical projection 
I I r :  TM-+ M, sending TxM to x for all x ~ M. Each of  the tangent spaces 
TxM is isomorphic to R ", and so we shall often denote an element in TxM 
by a pair (x, v) with v in some convenient isomorph of  R ", induced by a 
choice of  basis for TxM. 

The differentiable structure of  a smooth manifold allows us to define 
differentiability for maps between manifolds. In particular every point of  
such an n-manifold has a neighborhood that is diffeomorphic (denoted by 
~ )  to an open set in R ". Suppose that M1 and M2 are smooth manifolds 
of  dimensions n and m, respectively. Given any differentiable map 

f : MI  --> M~ 

there is induced a map, its differential, 

Df  : TM1 ---> TM2 

which for all x ~ M1 has a linear restriction 

D ~ f  : T~M1 ~ TI(~)M~ 

I f  ~0 and ~b are local chart maps about x and f(x),  then we have a local 
representation o f f ( w i t h  domain contained in R ~ signified by >-->) 

r ofo rp-l: R'~>--~ Nm: (x')v-->(y 0 

The Jacobian matrix (f /)~ at (x ~) - ~0(x) induces the local representation of  
the derivative D~f by ~ 

/ 3 J :  R ~ ~ ~ :  ( v ' ) ~  ( f /v  ') 

We use Einstein's summation convention throughout. 
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We shall find it convenient to write 

D x f  : TxM1 "-~ TI(x~M2: (x, v ~) ~ ( f ( x ) , f J v  ') 

when a choice of charts has been decided. 

2.1. A vectorfieM on a manifold M is a map 

w: M - - , ' . T M  

such that for all x e M, IIr(w(x)) = x. (See 4.3, Example 3.) We shall always 
assume that our vector fields are smooth. An equivalent definition is that w 
is a smooth section of the surjection Hr. The set of such will be denoted 
T M ;  under pointwise operations it becomes a vector space (infinite 
dimensional). 

It turns out that vector fields are derivations on smooth real functions 
on the manifold. 

2.2. The Lie bracket of  two vector fields v, w on a manifold M is the 
unique vector field denoted [v, w] and defined to act on all smooth f :  M--~ 
by 

[v, w](f) = v(w(f ) )  - w(v( f ) )  []  

2.3. An integral curve of a vector field w on M is a curve c: t~--> c(t) in 
M such that its tangent vector ?(t) at each t satisfies d(t) = w o c(t). Such 
curves always exist for smooth vector fields and they are essentially unique 
(see [16] for a recent geometrical proof). [ ]  

2.4. Suppose that (M, g) is a connected Riemannian manifold. Then g 
defines a distance function 

d g : M  x M~R:(x,y)~inf(f []dl[[c~F(x,y)) 
where F(x, y) is the class of  all piecewise continuously differentiable curves 
from x to y in M. Thus we have 

(i) (M, dg) is a topological metric space, and the metric topology 
coincides with the manifold topology. 

(ii) (M, g) is complete if  (M, dg) is a complete metric space. A Rieman- 
nian manifold that is not complete admits a completion as a metric 
space by the standard procedure using equivalence classes of  Cauchy 
sequences. We shall denote the extension of a metric d to this 
completion by d. [ ]  

Example. The point we illuminate is that if (M, g) is not complete, 
then for some x, y ~ M there may be no c e I'(x, y) such that the length 

f l] (II of c equals the distance dg(x, y). Take M = R2\{(O, O} with the Euclidean 
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metric and choose x = ( - 1 ,  0), y = (1, 0). Then plainly do(x, y) = 2, but 
there is no curve of this length joining x and y in M. In this case the Cauchy 
completion M of  M, is easily seen to be •2. 

2.5. A connected Riemannian manifold turns out to be complete if 
and only if every geodesic can be extended to arbitrarily large parameter 
values; however, this correctly belongs in Section 5 under connections (see 
5.8, 5.11, and 5.12). [ ]  

2.6. Every paracompact manifold admits a Riemannian structure. Con- 
versely, a connected Riemannian manifold is also a metric space by 2.4 and 
hence paracompact by 1.14. For  a connected manifold M, paracompactness 
is equivalent to M satisfying the second axiom of countability: its topology 
can be generated by a countable collection of open sets (see Kobayashi and 
Nomizu [41], p. 271). [ ]  

2.7. A parallelization on an n-manifold is a continuous assignation of  
an ordered set of  n independent tangent vector fields. That  is a continuous 
assignation of a frame or equivalently a continuous section of  the frame 
bundle (see 4.1). A manifold is called parallelizable if  it admits a paraUeliza- 
tion. The product manifold of  parallelizable manifolds is parallelizable. 
The only compact two-manifolds that are parallelizable are the Klein bottle 
and torus, and the only parallelizable spheres are S 1, S 3, and S 7. Any 
manifold with a global chart is parallelizable. I f  an n-manifold M is 
parallelizable, then there is a diffeomorphism T M  ~- M x R ~. [] 

3. LIE G R O U P S  

Global algebraic actions on manifolds prove to be powerful investigative 
tools, and they provide elegant geometrical constructions. We are interested 
in the actions of groups on smooth manifolds, so we shall want the groups 
to be smooth themselves with smooth actions. We are forced to the following 
definition. 

3.1. A Lie group is a group that is also a smooth manifold such that 
the group operation (a, b) ~-> ab- 1 is smooth. 

Note that saying that (a, b) ~-> ab- 1 is smooth is simply a short way of  
saying that the following maps are smooth for all a, b in the group: 

La: b ~-> ab (left translation) 
Ra: b F-> ba (right translation) 
- 1 : a ~ a-1 (inversion) 

Example 1. The general linear group Gl(n; R) of  all n x n real non- 
singular matrices forms an open submanifold of R n2. In particular 
GI(1; R) = R/{0}, which we shall denote by R*. 
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Example 2. The group of  matrices 

I 1 "1 (1  - v2 )  112 (1  - v 2 )  1/2 

v 1 

(1  - v~ )  ~/~ (1  - v ~ )  ~12 

401 

with 1 > v 2 ~ 

This is important in relativity where it generates a one-parameter subgroup 
of  the Lorentz group. It has an equivalent representation as 

cosh X sinh X ] 
s inhx coshxJ w i t h x ~ R  

3.2. A left-invariant vector fieM of a Lie group G is a vector field 
w: G -> TG that is fixed under the differentials of  left translations. This means 
that for all g ~ G, Lg: G ---> G: h ~-> gh, left translation by g, and the differential 
DLg: TG ---> TG have the property that 

DLgw(h) = w(Lg(h)) = w(gh), Vh ~ G 

Example. Let G = Gl(n; ~). Then for any a ~ G, 

T,G = ((a, A)IA is an n x n real matrix} 

In particular for n = 1 we have G = R*, and for all g E R* 

Lg: R* --* ~*: ae-->ga 

D~Lg: TaR* --~ To~* :  (a, A) ~ (ga, gA) 

3.3. The left-invariant vector fields of  a Lie group G form a vector 
space, and an algebra under the Lie bracket composition called the Lie 
algebra g of G. 

As a vector space we have an isomorphism of g with the tangent space 
to the identity e ~ G 

g ~ TeG: r~--~ y(e) 

Hence ~ has the same dimension as the manifold G. 
As an algebra we find that the inclusion of  ~ in ~(G), the Lie algebra of 

all vector fields on G, is a homomorphism so ~ is a Lie subalgebra of 
~r [] 

Example. For G = Gl(n; R) we have ~ = gl(n; R) consisting essen- 
tially of all n x n real matrices A, which determine fields by 

A: G---> TG: a~-> (a, A) ~ TaG 

The Lie bracket operation is the composite matrix product 
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[A,B] = A B -  BA  

We pursue the one-dimensional example in 3.2 to display the left-invariance 
property. Plainly we have ~l(1; ~) = R. Let y e R; then we require 

7: R* --> T~*:  av--> (a, 7a) 

such that for all a, g e R* 

DLw(a)  = 7(Lo(a)) 

Hence at the identity e = 1 e ~* 

gy(e) = 7(ge) = 7(g) 

So we have 7(a) = aT(l) --- a71, say. 

3.4. The adjoint representation Ad of  a Lie group G in its Lie algebra 
is obtained from the automorphisms 

ad (g) = LoR o - 1: G .--> G: h ~ ghg-  1, Vg ~ G 

by putting 

Ad (g): g ---> ~: 7~--> D(LgRo-1)7 = D a d  (g)(7) 

This of  course implies that left-invariance is preserved �9 

Example. The adjoint representation is trivial for any g ~ R*, since 

LgRg-~: R* .---> ~*: h~---> ghg -1 = h 

so Ad (g) = I R. 

3.5. Every 7 in g, the Lie algebra of  a Lie group G, generates a one- 
parameter subgroup of G as follows. 

Let cy: t~-> 7t bc the integral curve in G (see 2.3), determined for It[ < 
for some real E > 0, with initial conditions: 7o = ey(0) = e, the identity 
in G, and dy(0) = 7(e) e TeG (see 3.3). Define the map 

~ot: G-->G:g~->Lo(Tt), [ t l  < �9 

Now this is valid for all g ~ G and hence admits an extension to all t e R. 
I t  turns out that we have a group, because for all g E G 

Lo(7,+s) = Lo(7,) o L g ( n )  

Hence the required subgroup of  G is 

G~ - {~o,(e) lt e R} 

We also obtain the exponential map 

exp: g --> G: 7~--> 7x 
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Example. F o r  G -- Gl(n: ~) we find tha t  the exponential  m a p  coin- 
cides with the usual exponential  funct ion for  matr ices  9, 

e x p y  = ~ 9,~/k! 
k = 0  

We can see why this is so f rom the case n = 1. We seek the integral 
curve for  9' ~ ~l(1 ; ~)  = ~ given by (see Example ,  3.3) 

subject to cy(O) = e = 1 
at  all t e (-E~ ~) to 

So our  differential equat ion is 

and the required solution is 

c,: ( - , ,  O--> I~* 

and dr(O ) = 9,(1) = yo at 0 ~ ( - , ,  0 and subject 

4 ( 0  = 9,0 c,(t) 

e , ( t )  = 9,oC,(t) 

c r : ( -  E, ~) ~ ~* : t ~-> ero ~ 

Finally, the one-parameter  subgroup  is given by 

9t: R* --+ R*: g ~ gero t 

and the exponential  m a p  is 

exp: R --+ R*: 9, F+ e r 

3.6. Let  G be a Lie group and P a smoo th  manifold.  Then  G acts on 
P to (or on) the right i f  there is a smoo th  m a p  

t' x c-+1":  (u, g ) ~  Rg(u) 

satisfying (i) g : P - + P : u ~ + R g ( u )  is a diffeomorphism,  Vg~G,  and (ii) 
Rodu) = Rh(Ro(u)), Vg, h ~ G, Vu ~ 1". 

Example 1. Take  G = R* and P = R 2 with 

ff~2 x R* ---> R2: ((x, y), g)~-> (gx, gy) 

Example 2. Take  P = G and use right t ranslat ion in G: 

G x G--+G:(h,g)~-->Rg(h) = h g  

3.7. Let  a Lie group  G act on the right o f  a manifold  P. Then, f rom 
3.5, every 9' e g determines a one-parameter  subgroup  of  G 

G, = {~0t(e) = exp tg,[t e R} 

which acts on the right o f  P by its inclusion in G; it also has the following 
propert ies :  
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(i) Th rough  each u e P there is a smooth  curve 

t ~-> R,t(e>(u ) 

with tangent  vector  9'4" e TuP at  t = 0 (see 4.2). 
(ii) Denote  by ~ P  the Lie algebra of  vector  fields on P, and  define a 

m a p  

where 

y*: P---~ TP: u~---> y~,* 

Then  �9 is a Lie algebra h o m o m o r p h i s m .  I f  the only element o f  G with a 
fixed point  is e, then 7~* is not  the zero vector  at  any  u e P, for  nonzero  
, e , .  �9 

Example 1. 
then for  any  

we have 

Example 2. 
~l(1; R) = ~,  

When  G = 0 (2 ;  R), the or thogonal  subgroup  o f  Gl(2; N), 

, [ o  ~ 

cosO s i n O ]  
e x p y =  - s i n O  cosO]  

Fo r  G = GI(1; R) = N* we have f rom 3.5, for  any  y E 

Gr = {e t~ = exp tTlt e R} c R* 

Using the act ion o f  R* on R 2 f rom Example  1, 3.6, we find the curve 

t ~ Re,,(u) = (xe t', ye ty) = u(t) 

in N 2 through u --- (x, y). The  tangent  vector  to this curve at  any  t is 

((xe ~7, yet'), O, xe t', ~ydY)) e Tu<oR = 

Evaluat ion  at t = 0 gives the m a p  

y* : ~= -+  TR 2 : u F-> (u, yu) 

Evidently for  this example  y.* is the zero vector  at  u = (0, 0) because all 
y e R have a fixed point  there. 

3.8. An act ion of  a Lie group G on the right o f  a manifo ld  P is called 

(i) transitive i f  (Vu, v ~ P)3g e G: Rg(u) = v; 
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(ii) free if  the only element of G with a fixed point is e; 
(iii) effective if  (Rg(u) = u, Vu E P) => g = e. 

Example 1. The action of  g~* on R ~ in 3.6 is not transitive, but the 
fight translation in any G is always transitive because 

u, v E G =~ (3g = u - i v ) :  R g ( u )  = v 

Example 2. L e t P  = S 1 x N*; then the action induced by fight trans- 
lation in ~* is free, but the aforementioned action of  R* on R 2 is not free 
because every element of  N* has a fixed point at the origin. 

3.9. Given a Lie group G acting on the fight of  a manifold P, the orbit' 
of  G through u ~ P is the set 

[u] = {Rg(u)lg ~ G} 

and we denote by PIG the set of  all such [u] for u ~ P. Evidently PIG gains 
a topology by requiring that the projection 

IIp: P - +  P/G: uw-> [u] 

be continuous. 
We shall denote the connected component of the identity in a Lie group 

G by G +. The notation is motivated by the special case 

G I ( 1 ; R ) =  ~* and ~+ = GI(1;R) + = { g ~ R I g > 0 }  

Remark. A detailed study of  the geometry of  the Lie group of  uni- 
modular operators on R 2, SL(2; R), with many pictures, is given in [16] 
as an example of  an abstract space with a natural pseudo-Riemannian 
structure. 

4. F I B R E  B U N D L E S  

The general linear group and its subgroups always have actions on 
tangent vectors on a manifold. The tangent vectors collectively form a 
manifold, the tangent bundle, so we have a ready-made action on this 
manifold. However, at any point in a tangent bundle any element of  the 
general linear group simply sends the point to another one belonging to the 
same tangent space, in a linear fashion. So the orbits of the general linear 
group in this action are vector spaces. For  wider application we shall be 
interested in actions of Lie groups that give rise to orbits that are manifolds 
and not necessarily vector spaces. This is the motivation for defining fibre 
bundles. 

4.1. A principal fibre bundle over a manifold M is a manifold P with 
a Lie group G such that 

(i) G acts freely on P to the right; 
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(ii) M = PIG and the canonical projection lip: P - - .  M is smooth;  
(iii) P is locally trivial; that is, every x ~ M has a neighborhood U such 

that IIp~(U) is diffeomorphic to U x G. 

We call G the structure group of the bundle; property (ii) ensures that 
it is transitive on allfibres IIp*-(x). We shall refer to the principal fibre bundle 
as (P, G, M),  or simply as P, when G and M are well defined by the context. 

Example 1. The trivialproduct bundle with P = M x G. 

Example 2. The frame bundle or bundle of linear frames over a smooth 
manifold M. Here we have 

P = L M  = {(x, (X~))lx E M;  (X 0 an ordered basis for TxM} 

G = Gl(n; R), where n is the dimension of  M. For  all x ~ M any choice of  
basis for Tx M induces an isomorphism TxM ~- ~ which allows Gl(n; R) 
to act by matrix multiplication on the coordinate vector. Hence the subset 
determined by (x, (X~))eLM, that is, the orbit through this element (cf. 
3.9), is 

[(x, (X~))] = {(x, (X~g~J))l(g~9 = g ~ Gl(n; R)) 

Now, as g runs through Gl(n; ~), so Rg(x, (Xt)) runs through all bases for 
T~M; therefore we may as well abbreviate [(x, (X,))] to x. This leaves the 
required projection map in the form 

HL: LM---~ M: (x, (Xi))~+ x 

Example 3. We shall later have occasion to use LS 1. Here M = S 1 
and G = R* and so LS 1 ~ S 1 x ~*, the trivial product bundle. I t  has two 
components, corresponding to positively oriented bases L+S ~ ~- S ~ x R + 
and negatively oriented bases L - S  ~ ~ S ~ x R - .  Quite generally, if  M is an 
orientable manifold then L M  has two components;  otherwise LMis  connected. 
Any parallelizable manifold is orientable (see 2.7). 

4.2. Let (P, G, M)  be a principal fibre bundle. For  all 7 ~ ~ the funda- 
mental vector field corresponding to y is ~,*, as defined in 3.7. We observe 
the following properties. 

(i) Since the action of G translates each fibre along itself, ~'u* is tangent 
to the fibre at all u E P. Also G acts freely on P so y~* ~ 0 E T~P 
unless ~, --- 0 ~ ~. In consequence the map 

has trivial kernel, and since it is linear, it is an injection for all 
u e P (see 4.4). 
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(ii) Another formulation 
define a map 

of 7* is sometimes useful. 

,~: G ~ P: g ~  Ro(u) 

For  all 

407 

u ~ P  

This induces a bundle map, D%: TG ~ TP, which at the identity 
e ~ G has the restriction 

TeG--->T~,P: 7 ~-+ yu* 

where we have used the isomorphism in 3.3 to identify the spaces 
TeG and ~. 

(iii) For  all 7 ~ ~ and all u e P with I/p(u) = x, 

DIIp(7~* ) = 0 ~ Tx M 

This is another expression of the tangency of  7~* to the fibre 
containing u, menti'oned in (i). 

Example 1. Consider the case of  a frame bundle L M  where G = 
Gl(n; ~)  and g = gl(n; ~). Then we can display the preceding maps in 
components as follows. Let u = (x ~, bj9 ~ LM.  

~ :  G -+ LM:  (g/)  ~-> (x ~, gm~bj m) 

D~r~,: TeG -+ T~LM: (8: ~, 7: ~) ~ (x ~, b/, O, 7,~b: m) 

-+ T~LM: (7/) ~ (7~'bJ m) 

(Tj)* : L M - +  TLM: u ~+ (x ~, b/, O, 7m~bj m) 

Example 2. Consider the case of  L S ~ =  S ~ •  ~*. We have the 
following maps, for all 7 E ~l(1, ~) and u = (x, b) e L S L  

7* :LS ~ -+ TLS~ : (x, b) ~ (x, b, O, 7b) 

cry: ~* ---> LSZ: g~--> (x, gb) 

Do~: T~R*--> T~LSI: (1, 7)~->(x,b, O, Tb), a t g =  1 

T ~ *  ~ R: ( 1 , 7 ) ~ 7  

4.3. Let (P, G, M)  be a principal fibre bundle, and let F be a manifold 
on which G acts on the left. Then the fibre bundle associated to (P, G, M )  
withfibre F is a manifold (P x F)/G defined by the following properties: 

(i) The right action of G on P • F is 

(P x F) x G - + P  x F:(u,a,g)~-->(Rg(u),Lo_l(a)) 

(ii) The projection map is 

rip: (P x F) /G-+ M: Re(u, a)~+ He(u) 
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and it is required to be smooth ;  also every x e M has a ne ighborhood  
U such that  I Iv ' - (U)  is diffeomorphic to U x F. 

Example 1. Take F = G and use left translation. 

Example 2. The tangent bundle T M  to  a manifold M can be considered 
the bundle associated to the frame bundle L M  with fibre R ~, when M has 
dimension n. The fibre IIL~-(x) over each x ~ M can be identified with the 
tangent space TxM to  M at x. In  particular we see this for  S 1 with F = 
R 1 ~  R , G - -  • * . W e h a v e  

(LS 1 x ~) x R*---~LS 1 x R : ( x , b , a , g ) ~ + ( x ,  bg, g- la)  

for the right act ion o f  E* on LS  ~ • E. Therefore the orbit  o f  R* th rough  
(x, b, a) ~ LS 1 x ~ i s  

[(x, b, a)] = {(x, bg, g-la)lg e R*} 

which we can identify with (x, a) ~ TxS ~ because as g runs th rough  all o f  
R*, so bg runs through all bases for TxSL 

Example 3. The tangent bundle is a special case o f  the tensor bundles 
TheM. For  all k, h = 0, 1 . . . .  these again have P = LM, but  F is a tensor 
product  o f  k copies o f  R" and h copies o f  its dual R "*. Here G = Gl(n; ~) 
acts independently on the factors o f  the tensor product ,  as for T M  on R" 
and via t ransposed inverses on ~"~ We conventionally identify To~ with 
M • R, ToZM with TM, and TI~ with TM*, the cotangent bundle. When 
necessary we shall denote the projection maps onto  M by IIh ~. N o w  we can 
formulate  a tensor field of  type (~) as a (smooth) section o f  IIh ~. That  is, 
some w: M---~ ThkM such that  IIh k o w = lu. The set o f  such form a vector 
space ThkM for each k, h (see 2.1). Such smooth  sections always exist for  
TheM, as witness the zero tensor field o f  any type. However,  the frame 
bundle L M  need not  have any smooth  section, as witness the case M = S 2 
in consequence o f  the hairy ball theorem. In  fact there does not  even exist a 
continuous section o f  TS 2 that  is never zero. 

4.4. Let  (P, G, M )  be a principal fibre bundle. For  all u e P the vertical 
subspace Gu of  the tangent  space TuP is given by the kernel o f  DI Ip  as 

G~ = {X e T~P[ DHp(X)  = 0 ~ Tnp(~)M } 

N o w  we see that  the map in 4.20) actually induces an isomorphism 

g ---~ G~: ~, ~--~ y~* 

so dim G~ = dim G. 

Example. F o r / '  = LS ~, G = ~* we have for all u = (x, b) ~ L S  ~ 

~,:,~> = {(x, b, p, q) e T(x,b~LS~](x, p) = 0 E T~S ~) 

= {(x, b, 0, q) E T(~.b>LS~Iq ~ R} ~= R 



Space--Time Edge Geometry 409 

4.5. The canonical one-form of  a frame bundle L M  is the map 

19: TLM--+ R": (u, X ) ~  Ilu o DIIL(U , X )  

where for all u = (x, (BO) ~ L M  

Flu: T x M  ---> ~ :  a~Bt ~-> (a t) 

Since all vertical vectors lie in the kernel of  DILL, @(G~) = 0 for all u. 
Example. 19: T L S  1 -+ ~ :  (x, b, p, q)~+p/b.  Or more generally, with 

matrix components, 

19: T L M  ~ R~: (x ~, bj t, X ~, Bj ~) ~ (b/)  - l( Xt) 

4.6. Universal covering manifold. Homotopic curves. Given a con- 
nected manifold M, there is a unique universal covering manifold A~. [That 
is, a unique universal covering space (see 1.13) with manifold structure.] 

It turns out that (kTf, zrz(M), M) is a principal fibre bundle over M with 
structure group zr~(M), thef irs t  homotopy group of M. [ ]  

For  the proof  see Steenrod [60]), pp. 67-71, where the isomorphism 
classes implied by the uniqueness are also elaborated. 

Example. Take S" = {x E ~"+1111xtl 0 = 1} for n > 1. Real projective 
n-space, RP ~ is the quotient of  S" by the group 

G = { ls , ,J}  whereJ:x~--> - x  

It turns out that S" = ~P";  the sphere is the universal covering manifold 
of  projective space. 

We do not wish to develop details of the homotopy group here (see 
Pontryagin [51], ch. 9). However, in 5.7 we do have occasion to use the 
idea of homotopy for dosed curves. Essentially the curves c~, c2 are homo- 
topic if one can be continuously deformed into the other. More precisely, 
two closed curves cl, c2: [a, b] --+ M with c~(a) = c2(a) = x are homotopic 
if  there exists a continuous map f :  [a, b] x [0, 1] -+ M such that 

f (a ,  t) = f (b ,  t) = x, for all t ~ [0, 1] 

f ( s ,  O) = c~(s), f ( s ,  1) = c2(s), for all s E [a, b] 

A curve is homotopic to zero if it is homotopic to a constant curve. 

5. CONNECTIONS 

The earliest formulation of a connection on a manifold was by Weyl 
in synthesizing parallel transport of vectors along a curve. This was highly 
motivated by applications to space-times in relativity theory where it is 
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essential to be able to compare vectors from different tangent spaces. Con- 
nections give rise to geodesics, covariant derivatives, and curvature; and 
in any particular case there is no escape from calculating their manifesta- 
tion in coordinates, the Christoffel symbols. However, it suits our purpose 
to adopt a more global characterization to exploit the neat way that con- 
nections partition the geometry of  principal fibre bundles generated by Lie 
groups. Expressions in local coordinates will come soon enough. 

5.1. A connection V in a principal fibre bundle (P, G, M)  is an assignment 
of a subspace Hu of TuP for all u ~ P such that 

(i) T , P  = H~ Q G~ smoothly on TP (see 4.4): 
(ii) DRg(H~) = HR,~,), for all g ~ G (see 5.6, Example 2). 

Thus V is a smooth distribution satisfying (i) and (ii). We call Hu the hori- 
zontal subspace of T , P  or at u ~ P. It turns out that DIIe: TP ~ T M  in- 
duces an isomorphism H~ ~- Tnp(~)M for all u E P. It is common also to 
speak of V as a connection on M, where the context determines which 
principal fibre bundle V is in. 

Example 1. Let P = LS1;  then a constant connection in L S  ~ is given 
by any h E • if for all u = (x, b) E L S  1 we put (see [17]) 

n(x.b) = {(x, b, p, - hbp)lp ~ R} 

The vertical subspaces * R(x).b) were given in 4.4, so for any (x, b,p ,  q) 
T(,c,b)LS 1 we have the decomposition 

(x, b, p, q) = (x, b, p, - hbp) �9 (x, b, 0, q + hbp) 

Evidently this is a smooth decomposition on T L S L  Given any g ~ R*, the 
right action of it on L S  ~ is 

Rg: L S  1 ---~ L S I :  (x, b)~--~ (x, bg) 

so its differential is 

DRg: T L S  ~ ~ TLS~: (x, b, p, q)~-~ (x, bg, p, qg) 

Therefore, as required, we have 

Dno(H(x,b)) = H(x.bo) 

Finally, the differential of the projection IIr. is 

DIIz: T L S  ~ -+ TS I :  (x, b, p, q ) ~  (x ,p )  

which yields the desired isomorphism 

H(x,b) ~ TxSI :  (x, b, p, - abp)~---~ (x, p) 

Example 2. We observe that Example 1 is equally valid if S ~ is re- 
placed throughout by R. 
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Note also that in both examples, H(x,b) only looks horizontal (in the 
standard embedding in R 3 for L S  1 or in g~2 for LR) if A = 0. Finally, in the 
standard coordinate for either manifold, we have the solitary, constant, 
Christoffel symbol P~l = A. 

5.2. Let (P, G, M) be a principal fibre bundle with connection V. 
Every vector field w: M --~ T M  has a unique horizontal lift wt: p ~ TP such 
that for all u ~ P 

DIIl,(Wt(U)) = w o IIp(u) and wt(u) ~ Hu []  

Example. Take the case of a connection in a frame bundle LM.  Then 
V induces a derivation on vector fields on M. Local coordinates about 
x ~ M induce a basis (9t)~ for T~M for all y in some neighborhood of x. 
Locally a vector field v: M ~ T M  has an expansion v = vt~. The derivation 
induced by V is locally given by 

Vw,ej(dg~) = (wJgjv ~ + wJv~F~s~)Ok 

where 

F~jl~k = Ve~(0~), for all i , j  

are fieids having components the Christoffel symbols. Now a field LM--> 
T L M :  (x, b) v+ (x, b, X, B) turns out to be horizontal if and only if in local 
coordinates (see 5.6, Example 2) 

B /  = -- b jk XZF~kl 

This says precisely that each member b j ~  of the frame b at x ~ M satisfies 
the differential equation 

(X(b?) - B s ~ ) ~  = v ~ ( b j ~ a ~ )  

where of course the component X in (x~ b, X, B) is interpreted as a tangent 
vector and hence a derivation at x. 

We can write this symbolically in the form 

B = X(b)  - Vx(b) 

Hence given any vector field w ~ T M  with 

w: M---~ T M :  x~--> (x, X )  

we obtain the horizontal lift wt e TLM,  with 

wt: L M - +  T L M :  (x, b) ~ (x, b, X, X(b)  - Vx(b)) 

This is evidently unique, and since we have 

DH~: TLM---> TM:  (x, b, X, B)~-> (x, X )  

the required projection property is achieved. 
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In particular for the constant  connect ion  h on S ~, we  find the hor izonta l  

wt: L S  1 ~ TLSI :  (x, b) ~ (x, b, X,  - hbX)  

5.3. Horizonta l  lifts o f  vector fields have the following properties for  
all v, w: M - +  T M  : 

(i) (v + w)t = vt + wt; 

(ii) For  all smooth f :  M--+ R define f t  = f o  171,; then f t . v t  = ( f .v ) t ;  

(iii) [vt, wt]H = Iv, wit (H  denotes horizontal  component) ;  

(iv) Fo r  all g e G and all u e P 

 t(u) = 

(v) Every horizontal  vector field ~,: P---> TPH is the horizontal  lift o f  
some w: M - +  TM.  �9 

We are particularly interested in the following consequence, on curves. 

5.4. Every piecewise-C 1 curve e: [0, 1)--->M has a unique horizontal  
lift et: [0, 1) -+ P such that  the following is true: 

et(0) = u0 e IIp(c(0)) 

implies 

IIp o C 1" = C 

and the tangent vector field ~t is the horizontal  lift o f  c. Then  the map 

7,: I I / - (c (0) )  - +  I I / - ( c ( t ) )  : Uo ~+ ct(t) 

is a diffeomorphism for  all t, called parallel transport along c. I t  commutes  
with the action of  G. �9 

Example.  Again take the case o f  a connect ion V in a f rame bundle 
L M ,  developed in 5.2. We denote the restriction of  V to a curve by V (see 
[16]). Then  the required curve ct has tangent vector field dt satisfying 

V~(ct) = 0 

In local coordinates this becomes 

d (et)~ + (ct)JdkI'% = 0 

Fo r  a constant  connect ion A = F i n  e R on S 1, consider the (very!) typical 
curve with a e R 

c : [ 0 , 1 ) - + S ~ : t ~ + a t ,  s o d ( t ) = a V t  
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We have 

ct: [0, 1)---~LSI: tF--> (~t, b(t)) 

with the function b: [0, 1 ) ~  R* satisfying 

db 
-~ + b;t~t = 0 

Taking the initial condition b(0) = bo, we find 

b(t) = b o e  -a~ 

It follows that the parallel transport map is 

~'t: IIL~-(O) -+ HL'-(~t): (0, bo)~+ (at, boe -a~t) 

Thus for any ~ # 0, while c proceeds around the circle S 1, its horizontal 
lift through (0, bo) spirals up or down the cylinder L S L  In fact the spiral 
remains in one component (see 4.1, Example 3) because the function b 
cannot take the value zero. Our argument is again equally valid if S z is 
replaced throughout by R. 

5.5. A connection V in a frame bundle L M  determines geodesic curves 
c: [0, 1) -+ M as the solutions of 

= o 

which in local coordinates becomes 

dd ~ 
d-'-[ + dJCkFJk = 0 

It  turns out that c is a geodesic if and only if it is the projection of an integral 
curve of one of the standard horizontal vector fields determined for all 
(X z) �9 ~" by (see Example, 5.2) 

L M - +  T L M n :  (x, b) ~ (x, b, X,  X(b)  - Vx(b)) 

where X has components (XZ). [ ]  

5.6. The connection form of a connection V in a principal fibre bundle 
(P, G, M )  is the smooth map (see 4.2, 5.1) 

oo : TP -+ 0 : X~  @ Xo ~-~ 7, with y~* = Xa(u) 

It has the following properties: 

(i) For all 7 �9 ~, ~ = 7. 
(ii) oJ(X) = 0 -r X = XH �9 TP. 
(iii) For all g �9 G and all vector fields X: P ~ TP (see 3.4) 

co o DRo(X  ) = Ad (g-~)~o(X). 
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(iv) Connections and connection forms determine one another 
uniquely. �9 

Example  1. Take the ease of the constant connection )t in L S  1. We 
know from 5.1, Example 1, that any X =  ( x , b , p , q )  has the unique 
decomposition 

X =  X H O  Xa = ( x , b , p ,  - ~ b p )  G ( x , b ,  O,q + Abp) 

Moreover, from 3.7 and the examples in 4.2 we have 

~*(x, b) = (x, b, 0, ~,b), for all y E R 

Hence we require 

o~(x, b, p, q) = ~ = (q + Abp)/b 

which is well defined because b e R*. The properties (i)-(iv) are easily seen 
to hold for ~,. We elaborate just property (iii). 

Let g E ~* and X: L S  ~ --> T L S  ~ : (x, b) ~ (x, b, p, q). For all g ~ G, 
Ad (g-~) is the identity map on fields on R* 

Ad (g- ~)to(X) = D( L o_ ~ Rg)to( X ) = to(X) 

Also 

and by 3.3 

DRg: T L S  1 ._+ T L S  1 : (x, b, p, q) ~ (x, bg, p, qg) 

to(X) : R* --~ TR*  : a ~ (a, a(q + Ap)) 

Therefore we find that the composite 

to o DRg(X)  : R* -'+ Tiff* 

satisfies, as required, 

oj o DRg(x, b, p, q) = to(x, bg, p, qg) 

= (qg + Abgp)/bg 

= (q + bp)/b =- to(x, b, p,  q) 

Example  21 We further develop Example 1 in 4.2. From 5.2 we find 
expressions in local coordinates as follows. Let u = (x ~, bj i) ~ L M .  Then a 
typical tangent vector at u appears as Y = (x ~, bj *, X ~, Bj ~) and is partitioned 
by a connection with components I~.k into the direct sum 

Y = r n  �9 YG = (x', b~ ~, X ~, - b j k r ' ~ X  z) 0 (x ~, bj ~, 0, Bj ~ + bjkF[zX ') 

Now, in components, to(Y)E~l(n; •) is that matrix (~,j~)=7 such that 
(~#~),* = Yc. From Example 1, 4.2, we find that this requires 
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Or in matrix form 

(~m'b~ m) --- (By' + bjkr~tx ') 

y = (B + bPX)b-1 

Next we observe that for all (g/) = g ~ Gl(n; N) 

DRg( Y) = (x ~, gdbj ~, X ~, -gmkbpP~X ~) 
@ (x ~, g~bj ~, O, gm~By m + gmkbymr~X ~) 

Therefore w(DRo(IT)) is that  (~/]) = ~7: 

(vk'gmkbj m) = (g,~'B F + g,~b/"r~zx') 

Or in matrix form 

= ( g B  + gbrX)(gb)  -1 

= g(B + bPX)b- lg -1  

which by the linearity of  the action of  g gives, as required, 

~7 = R9-1~ Lg(y) = Ad (g -  1)(y) 

Note that the expression for DRg(Y) demonstrates property 5.1(ii). 

5.7. Let (P, G, M)  be a principal fibre bundle with connection V. We 
use the term curve to mean a piecewise continuously differentiable one. The 
loop space at any x ~ M is denoted C(x) and consists of  all closed curves 
starting and ending at x. There is a natural product on such curves. For  
all c ~ C(x) we have by 5.3 the parallel transport  isomorphism 

~-c: I I / - ( x )  - +  r i / - ( x )  

and it commutes with the action of  G on the fibre. The set of  all such 
{~'c[e ~ C(x)}, forms a group ~(x), the holonomy group of  V with reference 
point x. We can realize ~(x) as a subgroup ~(u) of  G for any u ~ P, as 

�9 (u) = {g ~ c i R . ( u )  = ~o(u), -c e ~ ( x ) }  

Equivalently, if ~ is the equivalence relation "can be joined by a horizontal 
curve" on P, 

�9 (u) = {g e a l u  ~ RXu)} 

Then for all u e P it follows that 

(i) Vg e G, qJ(Rg(u)) = ad (g-  1)q~(u) 
(ii) u ,-, v =~ qb(u) = *(v) 

(iii) q~(u) is a Lie group with identity component  ~~ where ~~ = 
{g s ~(u)[Ro(u) = re(u); c is homotopic to zero in C(x)} is called 
the restricted holonomy group of V with reference point u. [ ]  
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Example 1. Consider  L R  with constant  connect ion ~. F r o m  5.4 we 
observe tha t  for  all x ~ R, if  c is a closed curve in C(x),  then rc is the identi ty 
on IIL~(x). N o w  R* acts freely on the f rame bundle LR and so for  all 
(x, b) ~ L R  

(1)(x, b) = {g ~ R*IRo(u ) = u} = {1} 

We know tha t  horizontal  curves in L ~  are of  the fo rm 

ct: t ~-~ (x + =t, be -a~t) 

Hence (x, b) ~ (x' ,  b') i f  and  only if for  some s t  = r ~ R 

x ' - x = r  and  b'/b = e -a" 

Example 2. Here  we see a depar ture  o f  the geomet ry  of  L S t  f rom tha t  
o f  LR,  in the fo rm o f  a nontr ivial  ho lonomy  group.  Again use the constant  
connect ion h. We take S t to be R modu lo  the integers, 7/. We still have trivial 
members  o f  C(x),  for  any x ~ S t, but  now we also have those curves which 
m a y  make  one or more  circuits o f  S t , such as 

ek:[O,k]---).St:t~--).(x + t ) ( m o d l ) ,  k~77 

In  fact the essential members  o f  (I)(x) are in the set {~-c~[k ~ Z}, and  we know 
tha t  these elements commute  with all Rg because 

~-~: IIL'-(x) ~ I Iz ' - (x) :  (x, b) ~ (x, be - ~ )  

Accordingly the ho lonomy  group  with reference point  (x, b) is 

~b(x, b) = {e -ak ~ R*lk E 7/} 

The relation ~ has the same fo rm as in Example  1, bu t  on L S  t we have 
(x'  - x) (rood 1) = 0 whenever (x '  - x) ~ 7/. Therefore  in all fibres IIL'-(x) 
we find 

(x, b) ~ (x, be-ak), k ~ 77 

We know f rom 3.4 tha t  for  all g - r E  R*, a d ( g  - t )  is the identi ty m a p  on 
R*, and  so 

ad (g - t )~ (x ,  b) = ~b(x, b) 

Also, as required, 

gg(Rg(x, b)) = ~b(x, bg) = ~(x,  b) 

The identity componen t  is trivial 

(I)~ b) = {e -ak ~ •*lk = 0} = {1} 

See the example in II.3.12, which has ho lonomy  group gO*. 
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5.8. Let (P, G, M) be a principal fibre bundle with connection V. For 
all u e P the holonomy bundle through u is the subbundle 

P(u)  = {v c P l u  ~ v) 

with structure group ~(u). Since ~ is an equivalence relation, the holonomy 
bundles partition P into nonempty disjoint sets. Moreover, every g e G 
maps each horizontal curve into a horizontal curve; we have the isomorphisms 

Ro: P(u) --+ P(ug), ad (g- 1): qb(u) -+ r 

Example. For Example 2 in 5.7 we find 

P(x, b) = {(x + r, be-~')lr ~ R} 

and its structure group is Z. 

5.9. The Levi-Civitgt connection of a Riemannian or pseudo-Riemannian 
manifold M with metric tensor field g ~ T2M is the unique connection in 
L M  such that (i) parallel transport is always an isometry along curves in 
M, and (ii) for all vector fields v, w: M--+ T M  (see 5.2) 

V~w-  Vwv = Iv, w] [ ]  

The first condition is referred to as compatibility with g, the second is referred 
to as the symmetry or torsion-free property of the connection. 

Example 1. The constant connection A in LR is the Levi-Civit~t con- 
nection induced by the Riemannian metric tensor field given locally by 
gll = e2aX at x e R, that is, 

gx: T=R x T=R -+ R: ((x, y), (x, z))~--~yze 2~ 

However, the constant connection A in LS 1 does not arise as the Levi- 
Civith connection of any Riemannian metric on SL 

Example 2. Consider the cylinder, useful in the sequel, given by 

N =  {(~b, ~ ~ ~21~b~(0,27r),g~ [0,27r)}_~ (0, 2~r) x S ~ 

where we have identified cr = 0 and g = 2zr. So S ~ appears as the real 
numbers modulo 2zr. We can supply this with the pseudo-Riemannian 
metric tensor field g with coordinates in the above indicated chart given by 
the matrix (see [7] and [15]) 

(gij) = ( 1 -  cos ~b)2[O 1 ~], at (~, ~)~ N 

From the well-known local coordinate form of this theorem, the components 
of the induced Levi-Civit~ connection are given by (see [16]) 

2gr~Y~ = ~g~z -- ~lg~s + ~Jgz~ 
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And so we find at (~b, ~) �9 N 

sin~b [10 ~] sin~b [0 1] 
(C~,) = 1 - -cos  ~ , (I'~j) 1 - cos ~b 

5.10. The bundle of orthonormal frames of a Riemannian or pseudo- 
Riemannian manifold (M, g) is the subbundle OM of LM, consisting of 
orthonormal frames 

OM = {(x, (X,)) �9 LM[ Igx(X,, Xj-)[ = 8,j} 

Hence a connection in L M  induces a connection in OM. �9 

Example. Consider the pseudo-Riemannian cylinder (N, g) in the 
preceding example. The component O +N of positively oriented orthonormal 
bases has the structure group mentioned in 3.1, Example 2. We readily 
observe that 

l [~q 
1 - cos ~b 0~ 

is an orthonormal basis for T(o,~)N. We can arrange to locate this at X = 0 
(see 3.1); then 

{ (  [c~ s inhx]  1 [0~'])I } 
O + N =  ~,~r,[sinhx coshx] 1 - cos~b 0~ X � 9  

Hence we can think of this bundle as 

O + N =  {(~b, cr, X) �9 x S 1 x N}~  N x  N 

X2 s), which (X1 J, we We see that X �9 R determines at (~, ~r)�9 N a basis JO Ja 
have expressed with respect to the basis (~1, ~2) induced by the coordinates 
(G e), such that 

cosh X 
Xll = X 2 2 -  1 -  cos~b 

sinh X (see [7]) 
X21 = X 1 2 -  1 - c o s  

It follows from 5.4 that any curve c: [0, 1]-+ N has a unique horizontal 
lift to O+N. This is given by 

ct: [0, 1] -+ O+N: t~--> (c(t), x(t)) 

where the real function X satisfies 

d__x = _ d2 sin c 1 
dt 1 - cos c ~ 
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and this equat ion is implied by 

~7~(x~t~j) = 0, 

or  equivalently 

i = 1 , 2  

419 

d j 
X~ = - t~tekX~z, i, j ,  k = 1, 2 

where (the function) X determines the (function) X~ j as before. 
We find, for  example,  that  

c: t ~ (~o, t), ~o = constant  

has horizontal  lift th rough X(0) = Xo at  t = 0 given by 

ct: t~--> (~0, t, Xo - tc~o), C~o = sin ~bo/(1 - cos ~ho) 

The  corresponding parallel t ranspor t  is therefore essentially 

sin r 
~'c: IIo~'(c(0)) ---> IIo~-(c(t)): X0 ~-> Xo - t 1 - cos ~b0 

which is evidently an isometry  for  g by construction,  and in consequence 
of  the identi ty 

cosha X - sinh2 x = 1 

5.11. In  a R iemannian  or pseudo-Riemannian  manifold  (M, g), for  all 
x ~ M and all v ~ TxM there is a unique geodesic curve c in M such that  
c(0) = x, ~(0) = v (see 5.5). 

The m a p  expx is defined on the subset 

Ex = (v ~ TxMI3 geodesic cv: [0, 1] --* M w i t h  cv(0) = x, d~(0) = v) 

by put t ing 

exp , :  E~ --~ M :  v~--> c~(1) 

I t  is always smooth  on some ne ighborhood  o f  0 E TxM. [] 

5.12. A connected Riemannian  manifold  (M, g) is complete  (see 2.4) 
if  and only if  it is geodesically complete with respect to the induced Lev i -  
Civit~ connection.  By geodesically complete  we mean  that  every geodesic 
admits  an extension to arbitrari ly large pa ramete r  values. A connected 
complete  Riemannian  manifold  has the following propert ies:  

(i) Fo r  all x ~ M,  the m a p  expx: TxM---> M is surjective. 
(ii) Any  two points  can be joined by a minimizing geodesic. [ ]  
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5.13. A connected Riemannian manifold (M, g) is complete if any of  
the following conditions hold: 

(i) All geodesics starting from any particular point are complete. 
(ii) M is compact. 

(iii) The group of  isometries is transitive on M (see 3.8). 
(iv) The orbit of the group of isometries through any particular point 

in M contains an open set of M. [Then the open set coincides with 
M and we have (iii).] �9 

5.14. The curvature of  a connection V in a frame bundle L M  is the map 
on pairs of vector fields defined by 

R: Y 1 M  x Y1M---~ L( l r lM;  FIM):  (v, w)~--> R~.w) 

Rc~,w>: Y1M--+ Y1M: z ~ V~(Vwz) - V~(V~z) - Vtv,w]z 

It follows that we can consider the curvature as a tensor field of type (~), 
so R ~ YaIM. I f  V is the Levi-Civit~t connection of  some g ~ Y2M, then we 
call R the Riemann tensor. The curvature has a variety of  well-known geo- 
metrical attributes, and Riemann tensors in particular possess a range of  
symmetry properties. We shall recall these as necessary in the sequel (see 
[16] for a detailed account). 

The Ricci tensor is the unique (up to sign) contraction of  the Riemann 
tensor to a symmetric member of Y2M. In the theory of relativity it is used 
to link the physical energy-momentum tensor to the geometry of space- 
time (see Part III). We fix the choice of signs by indicating local components: 

l m l m Riemann components: R~kj- = ~kF~j -- ~jF~k + Fm~F~j - FsmF~ 
Ricci components: Rij = R~j  
Scalar curvature: g~JRij 



Part II. Connection Geometry from Frame Bundles 

We have seen how a connection in a frame bundle L M  decomposes the 
tangent spaces into a direct sum. The horizontal component  spans "direc- 
tions in the manifold M "  and the vertical component  spans "directions in 
the fibre," that is, in Gl(n; R). We recalled that a Riemannian or pseudo- 
Riemannian metric tensor field on M always determines the Levi-e ivi th  
connection in LM. In a space-time manifold M we have, implicitly deter- 
mined from the disposition of matter, a Lorentz metric tensor field and 
hence a connection. Also, when it is convenient, we can work on a space- 
time with a subbundle of  LM, namely the bundle O M  of orthonormal 
frames with structure group the Lorentz group. Sometimes, to reduce the 
dimensions still further, we can deal with submanifolds and their bundles 
to gain useful information about the whole space-time. 

In order not to confuse the geometry that arises from a connection with 
the geometry that requires a metric tensor field on the underlying manifold, 
we avoid specializing to space-times where appropriate. Thus we consider 
a manifold M with a connection V. This V induces a Riemannian metric 
on the frame bundle L M  in such a way as to make horizontal and vertical 
subspaces orthogonal. Here we are interested in the consequent geometry 
of L M  and the Cauchy completion of its connected components. The pre- 
cise definition of a space-time is given in Part  III ,  where we consider the 
geometry induced by its Levi-Civit~t connection. 

1. S C H M I D T ' S  BUNDLE M E T R I C  

We suppose that M is a smooth n-manifold with a connection V in LM. 
The ideas originate in Schmidt [55], though Hawking [34] has suggested an 
earlier origin in Ehresmann [22]. However, Schmidt was unaware of any 
influence of this work of Ehresmann on his construction. 

1.1. Existence. We denote the standard inner product on R m for any 
m b y . ,  and we recall the canonical one-form O from 4.5 of  Part  I and the 
connection form co f rom 5.6 of  Part I. Then the Riemannian metric defined 
by Schmidt on L M  is denoted by ( , ) where 

( , ): T L M  x TLM--+ •: (X, Y ) ~ + | 1 7 4  + ~o(X).o.,(r) 

Symmetry and bilinearity follow from that of  �9 and the linearity of  @ 
and ~o. Positive definiteness follows from that for �9 because for all X ~ T,~LM 
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[[ X [I 2 = ( X ,  X )  = 0 ~ O(x) = 0 e R" and 

:e. X ~ G~ and 

~ X = O m  

Dodson 

, , , (X)  = 0 e R ~ 

X ~ H= (by 1.4.4, 5.6) 

Example. Take  M = S 1 with the constant  connect ion ;~. F r o m  1.4.5, 
5.6 for  all (x, b, p, q), (x, b, r, s) ~ To,.b)LS 1 

((x, b, p, q), (x, b, r, s)) = (pr/b 2) + (q + abp)(s + abr)/b 2 

II(x, b ,p ,  q)ll ~ = (p/b) ~ + ((q + abp)/b) 2 ( s ee  [17])  

We find the length with respect to this no rm of  two curves in L+SL 

Case 1. c: t~--> (xo, t), for  fixed Xo e S ~ and t ~ [1, tin]. This is a vertical 
curve with tangent vector  

d(t) = (x0, t, O, 1); II~(t)ll = 1/t 

Hence the length is (for tm >1 1) 

fi " [[~(t)ll = log tm dt 

Since this tends to infinity as tm ~ oo, we see that  all the fibres IIZ+ (Xo) - 
L+S 1 are infinite for  Xo ~ SL 

Case 2. c: t~-~ ( - t  mod 1, eat), for  t e [0, tm]. Again this begins at 
basis 1, but  by 1.5.5 this curve is horizontal, and for tm t> 1 it necessarily 
meets all fibres. We find the tangent  vector  

d(t) = ( -  t mod  1, e ~t, - 1, ;~e ~') 

s o  

Iid(0H = e - a '  

Hence the length is (for tm /> 0) 

[ . f ~ ' e - ~ ' d t [ = ( 1 -  e-~'-)/I  hI 

Plainly this tends to 1/IX I as t,, -+ oo. So we have an example o f  a curve o f  
finite length in L+S ~ whose projection covers S ~ infinitely many  times. 

1.2. Uniqueness We prove the claim of  Schmidt tha t  if  �9 is replaced 
by different inner products  on R ~, R ~2, then the ensuing metric structure 
for  L 'M is uniformly equivalent to that  given by ( , ). (See 1.2.4, 1.11.) 

Proof. Consider the widest generalization of  ( , ). It  will be o f  the 
form 

<< , )): (X, Y)~-+ O(X)  �9 O(Y)  + oJ(X) | ~o(Y) 
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where , ,  | are inner products given by 

�9 : R '~ x R '~ -+ R: ((a~), (b~)) ~ g t # b  j 

| : R "~ • R "~ -+ R: @9 ,  @9) ~ G~ju~v j 

for some matrices of fixed numbers (g~j), (G~i). 
Let d and d '  be the topological metrics (see 1.2.4) induced by < , >, 

(( , )) respectively on each connected component L ' M .  We must prove 
that for all u, v ~ L ' M  

(i) (re1 > 0)(331 > 0): d(u, v) < 31 ~ d'(u, v) < ,1; 

(ii) (V,2 > 0)(332 > 0): d'(u, v) < 32 =~ d(u, v) < r 

From 1.2.4 it is sufficient to consider the norms ]] 1[ and ]] II, induced 
by < , > and (( , >>, respectively, on an arbitrary tangent space T~,L'M. 
Suppose X ~ T,~L'M and O(X) = (h ~) ~ R ", co(X) = (v ~) ~ R "2. Then we have 

[I X 1].2 = g , # h  s + G,jv, v j 

rlxll ~ = a,,h'h, + a,,~,~, 

We know that any two norms on a finite-dimensional vector space are 
uniformly equivalent. Hence there exist ml, m2, M~, and M2, all positive, 
such that for all (h ~) ~ R" and all (v ~) ~ ~"~ 

m13~#h j <~ g~#h  j <~ m23~#h s 

Mz3~jv~v j <~ G~iv~v j <~ M23~jV~v f 

Let mo = min {m~, M~}, M0 = max {rn2, M2}; then 

mo[lXll ~ .< IlXll, ~ .< MolIXll ~ [ ]  

1.3. Uniform Action of Gl(n; R). For  all g ~ G +, the identity com- 
ponent of Gl(n; ~),  the right action Ro is uniformly continuous on the 
metric space L ' M .  

Proo f  Previous results allow us to give a brief, complete proof  that 
differs somewhat from that outlined by Schmidt [55]. First we observe that 
by 1.2.4 the metric topology coincides with the manifold topology, so the 
proposition is well formed. 

It is necessary to prove (see 1.1.9) for all g ~ G  + and all u , v ~ L ' M  
that 

(vc > 0)(3a > 0): d(u, v) < a ~ d(R1u),  n l v ) )  < c 

From 1.2.4 it is sufficient to show for all Y e  T=L'M and all u E L ' M  that 

( re  > o)(3~ > o)= tl r[ I  < 3 ~ I I D R I Y ) I I  < 
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We follow example 2 in 1.5.6 and write Y locally in matrix components as 
Y = (x, b, X, B), so DRo(Y ) = (x, gb, X, gB). From 1.4.5 and 1.5.6 

/ 

| = b-~X, | = (gb)- lX = b- ig-XX 

,o(Y) = (B + b r X ) b  -~ 

oJ(DRg(Y)) = g(B + bPX)b-lg-:t 

This reduces the problem to the following geometrical result (see [16], 
pp. 132ff.). 

Suppose f ~  Gl(n; R). Then there exists r > 0 such that for L e m m a .  

all X ~ R '~ 

IIf(x)II0 ~ rllXllo 

Proof. Since f is linear, it is sufficient to work with unit vectors X. 
The unit ball is compact a n d f i s  continuous, so f i s  bounded as required. �9 

Returning to our main proof, we find 

II r l i  ~ = IIb-~Xllo + ll(B + bFX)b-~]fo ~ 

IIDRg(Y)II ~ = []b-lg-lXl[o + ]lg(B + brX)b- lg-~l ld  

We apply the lemma twice, with f = b - 1  a n d  f = b - l g - 1 ,  to obtain 

Ilb-lg-lX[ld ~ rllb-~Xlld 

Now we use the lemma w i t h f ~  Gl(n2; •) given by 

f :  R"~--+ R,~: W~__>.gWg-~ 

Hence we find 

]]g(B + bFX)b-lg-lllo 2 ~ sll(B + bFX)b-ll]o z 

We put these together with m = max {r, s) and deduce that 

IIDRg(Y)II = <<. mll YIl ~ 
from which the uniform continuity of R9 follows. �9 

Corollary: Uniform Extension to Completion. From 1.1.10 every Rg has 
a uniformly continuous extension /29 to the Cauchy completion (L 'M,  d) 
in which the metric space (L'M, d) is dense (see 1.2.4). 

The extension d is also well defined and unique by the uniqueness (see 
I. 1.4) of limits in a metric space, which is of course always Hausdorff. For 
similar reasons /29 is uniquely determined because for all Uo e L 'M there is 
a unique limit, 

lim Rg(u), in L ' M  
~ UO, I t~  L ' M  
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From 1.1.10 we recall that Rg agrees with/~g on L'M.  [] 

Example. From the example in 1.1 we see that for any g e R § 

i[(x, b, p, q)l] 2 = (p/b 2) + (q + hbp)2/b 2 

][DRg(x, b, p, q)[I 2 = ][(x, gb, p, gq)[]2 = (p/b2)/g2 + (q + Abp)2/b2 

The geometry o f / ,R  and LS 1 with the metric tensor field ( , ) induced 
by a constant connection h s R has been described by Dodson and Sulley [17]. 
It  turns out that for h # 0 the essential part of  LR is uniformly equivalent 
to 

{(u, ~) e R~I lv r > 1/I;~l} 
with the standard metric, under the map 

9: LN -+ N2: (x, b)~-~ (Zx + log [b l, (1/b + sgn (b))/lkl) 

Horizontal curves appear in cp(LR) as the lines u = constant, and the fibre 
IIL+-(x) is the curve given by 

v = +_(1 + e x- )/lal 

For any g ~ R* the right-action appears in ~0(LR) as 

cpo Ngo ~-1: (u, v)~-+ (u + log [el, (v/g) + sgn (v)(sgn (g) - 1/g)/[a]) 

The length of the horizontal curve through x = 0, b = b0 is l/lAb]. Evi- 
dently, Cauchy sequences in q~(LR) with limits on the lines v = _+l/Ik [ 
establish the latter as the boundaries of  the two components of  LN. The 
extension of Rg t o / , R  is then given by the action on (u, _+ 1/]k[): 

q~o ~g o ~0-1: (u, + 1/[ A[) ~ (u + log [g], _+ sgn (g)/[h]) 

We can use ~0 to define a uniform equivalence of  the essential part of 
L S  1 with the cylinder obtained by identifying points (u, v) and (u + hk, v), 
k E Z. Here the boundaries of L+S ~ and L - S  ~ appear as the circles v = 
+_ l/]A[. Plainly this action of Rg and its extension also applies to L S  z by 
taking u modulo h. F o r / , ~ R  a n d / . ~ S  ~ the boundary is itself an orbit of 
the identity component R+ of R*. 

1.4. The b-boundary. Our preceding result and corollary show that the 
identity component G § of Gl(n; ~) acts on the right (see 1.3.6) of each 
manifold L'M. Hence from 1.3.9 the topological space M = L'M/G § is 
well defined, with 

IIz : L ' M  ---> -M: u ~-> {/~g(u) lg e G + } 



426 Dodson 

continuous, and coincident with I-Iv on L'M. Thus we have rlz.(L'M) = M 
and we define the b-boundary of M, with the given connection, to be OM --- 
MIM. From the previous results of  this section 8M may be nonempty;  if 
so, then it is essentially unique. �9 

We shall call M the bundle-completion of  M, with given connection. 

Example 1. For  • with constant connection A we have from Example 
1.3 

L+R ~- {(u, v) ~ ~ I v  >1 l/lal) 

The orbits of  g e R + appear as the exponential curves with 

v - (1 + e~X-u)/ la  I 

One curve corresponds to each fibre IIL~(x). For  each x E R such a curve 
approaches the boundary v--- 1/Ial only as u - +  +oo. Also an open set 
consisting of such curves and containing the boundary v = 1/la] must include 
all curves for x in an interval ( - 0 %  a) for some a ~< ~. Hence/~ = L + ~ / R  + 
is homeomorphic to a half-closed interval. 

Example 2. For  S 1 with constant connection ), we find 

L + s  1 -~ flu, v) e s ~ x Rlv > 1/Ial} 

The orbits of  g e R + appear as exponential spirals on this half-closed 
cylinder, and again the b-boundary consists of  just one point. However, 
unlike the case in Example 1, any neighborhood of v = 1~[hi i n / , + S  1 
intersects every fibre. So the only neighborhood of  the b-boundary point 
of  S 1 is ~1. Hence S* is at most  a T0-space and therefore not Hausdorff  
(see 1.1.1). We can see that, in u-v coordinates with the standard metric on 
the cylinder 

n~+(ha, (e - ~  + 1)/]h[) 

is a Cauchy sequence in the isomorph of  L+SL  But it is less obviously 
Cauchy in the original x-b coordinates (see II1.2.7) 

n ~ (a, e ~=) 

1.5. Conformal and Projective Boundaries. For  Minkowski space-time 
Penrose [50] devised a conformal boundary and Eardley and Sachs [20] 
devised a projective boundary. Schmidt [57] showed that any conformal or 
projective structure on any manifold M defines a natural boundary, and in 
the case of  Minkowski space it coincides with the earlier boundaries. 

Definition 1. Two metric tensor fields g, g' are conformally related if  
for some real function or, g' = e2~g. This is an equivalence relation and the 
class [g] of  a given g is called a conformal structure. 
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Definition 2. Two symmetric linear connections V, ~7 are projectively 
related i f  every V-geodesic is a 9-geodesic. This is an equivalence relation, 
and the class [V] of  a given V is called a projective structure. 

Proposition (Schmidt [57]). A conformal structure [g] on M determines 
a conformal boundary OcM, and similarly a projective structure determines a 
projective boundary. 

Outline of Construction. For  all a ~ [g] let O be the structure group of 
the orthonormal bundle OMa. Then there is a subbundle of LM 

[OMg] = ((x, (X),) ~ OM~[a ~ [g]} 

with structure group t) x • and projection IIg: [OMg] -+ M. 
Every a ~ [g] yields a Levi-Civita connection V~ and a corresponding 

horizontal subspace. Thus at each point u ~ [OMg] the conformal structure 
[g] determines a family [H~] of  horizontal subspaces of  T~[OMg]. The mem- 
bers of  this family are related by the differentials of  the conformal factors, 
via their connections. It  turns out that the corresponding n-tuplets of stan- 
dard horizontal vector fields (see 1.5.5) are mapped among themselves, 
essentially by the addition group ~ .  

From these observations Schmidt finds a subset P of the frame bundle 
L[OMg], with structure group R ~ and projection Fly: P-+ [OMg]. He is 
able to show that P is a principal fibre bundle (see 1.4.1) over M with projec- 
tion FI r o IIv and structure group K obtained from derivatives of elements 
of the eonformal group t) x ~ +. 

Now every a ~ [g] determines via V~ a curvature tensor R~ which 
uniquely decomposes into a sum 

where C~ is the conformal tensor and S~ depends only on the Ricci tensor, 
with C~, = Cb for all b e [g]. Moreover we can always find a real function 

such that for given x ~ M, a ~ [g] 

e 2 ~ a = b  in[g] 

with ,~(x), da(x), and Sb(x) all null. Now this b defines a unique connection 
and its associated n-tuplet of standard horizontal vector fields on LM. 
The map 

DIIv: TP --+ T[OMg] 

allows us to lift such fields to become vector fields on P. 
Finally, the structure group K acts uniformly continuously on P with 

respect to the topological metric available from the parallelization (see 
1.2.7) by horizontal vector fields. Hence there is admitted a unique extension 
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of the action of  K to the Cauchy completion/~. We then define Mc = P/K 
and OcM = Mc\M. 

The construction of the projective boundary follows similar lines 
because a projective relation between standard horizontal vector fields is 
of similar type to a conformal relation. �9 

2. THE METRIC T O P O L O G Y  OF L'M 

As a metric space, L ' M  is necessarily normal (see I. 1.7) and therefore 
Hausdorff. By construction L ' M  is connected, locally connected, and arcwise 
connected. It  also satisfies the second axiom of  countability: the metric 
topology on L ' M  has a countable base. Here we shall collect some further 
consequences of  our choice of metric. We shall make occasional use here 
and subsequently of the survey article on fibre bundles by Eells [21]. At the 
same time, two standard texts are invaluable reference works: Pontryagin 
[51] and Steenrod [60]. 

2.1. G + acts transitively on fibres. 

Proof. First, G + acts freely on L'M by construction as a principal 
fibre bundle and transitively on L'M because L'M consists of ordered bases 
(see 1.3.8, 4.1). Now suppose that ~ ~ 9M so II~,(~) _ L'MIL'M. Hence 
we may suppose that there exists some uo e II~,(~). Then from 1.4 

n~,(~) = {~g(Uo)lg ~ o +} 

I f  u, v e II~,(~) then we have for some g, h e G § 

~g(Uo) = u, ~ ( U o )  = v 

Therefore u = RgRh_i(v). �9 

2.2.  IIr, is an open map. 

Proof (see Eells [21]). Suppose U is open in s  we show that 
IIz,(U) is open in M. Any g e G § is a homeomorphism, so U =/~g_l/~g(U) 
is open and hence Rg(U) is open. 

From 1.4, IIz,(U) is open if and only if II~(IIr,(U)) is open in L'M. 
We show that 

II~,(r lv(U))  = U {/~g(U)lg e G +} 

This is a union of open sets and therefore open. 

Suppose a e/~o(U); then a = _Rg(b) for some b ~ U. Hence 

I /v(a)  = f ly(b)  so a E rE,(IIL (U)) 
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Conversely, suppose a e II~,(IIr,(U)). Then FIL,(a) = IIz,(b) for some b ~ U. 
But from 2.1, G + acts transitively on fibres so/~g(b) = a for some g E G +. 
Hence a ~ /~ (U) .  [ ]  

2.3. Completeness of Fibres with the Induced Metric. Suppose that (v,) 
is a Cauchy sequence in a fibre over x ~ M, in the induced metric, with limit 
v ~ L 'M.  Then v ~ II3(x).  

Proof. By construction L ' M  is complete, so v 6 I I~(y)  for some y 6 M. 
Suppose y # x. Distinct fibres are disjoint, so for some r > 0, denoting the 
extension of the metric to L ' M  by d, we see that 

d(II3(x) ,  v) = r 

Then the open ball S(v, r/2) contains v but does not meet II~(x). Hence 
(v,) does not meet this ball. That  contradicts its convergence to v, so 
x = y . � 9  

Corollary. By the transitivity of  G + on fibres, 

(Vn ~ ~)(3g,  e G+): Rg,(v,) = v 

Hence, by the continuity of  each Rg,, 

l i m g ,  = e, the identity in G + [ ]  

A stronger aspect of  the completeness of  fibres over M is in the next 
result. Note that here we are measuring distances by taking infima over 
curves in thefibre for the Cauchy condition, in contrast to the situation in 3.5. 

2.4. Fibres in L'M are homogeneous spaces. Every fibre I Iv(x)  is a 
complete Riemannian submanifold. 

Proof. The metric tensor field ( , ) restricts to II~(x),  which is there- 
fore a Riemannian submanifold of  L'M.  Let u ~ L 'M.  Now if Y ~ T~IIv(x ) 
then Yis vertical, and so by Definition 1.1 H YH = II(c~ in the notation 
of  1.2. I t  follows from the proof  in 1.3 that the set of  maps 

{DRg[g ~ G +) 

gives rise to a group of isometrics on T,I /3(x) .  Since G + acts transitively 
on such fibres, by 2.1, the fibres are homogeneous. I t  is known that homo- 
geneous Riemannian manifolds are complete; see, for example, Kobayashi  
and Nomizu [41], p. 176 (cf. 1.5.13). [ ]  

Example. Consider L + S 1 with the constant connection A. Then a typical 
tangent vector to the fibre over (x, b) ~ L + S  ~ is Y = (x, b, 0, q). From our 
previous results we have for any g ~ ~+,  DRg(Y)  = (x, bg, O, qg) and so 

II YJt = Iql/b, IIDRg(Y)II = [qgl/bg = IlYIi 
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For any x e S* the fibre IIZ'+(x) is complete, with infinite length, in the 
induced metric (see 1.1). However, II~-+(x) is incomplete and finite when 
considered with the full metric which (see 3.5) allows points to be linked by 
horizontal curves that may leave II~-+(x). 

2.5. Completion of Bundles to Which the Connection is Reducible. 
Friedrich [25] showed that the b-boundary can be constructed on every 
closed subbundle of  L M  to which a Levi-Civit~t connection V is reducible. 
Hence the construction respects product structures. Also connection- 
preserving mappings between space-times admit continuous extensions to 
their completions. Therefore the group of affine transformations (preserving 
connections) and the group of  isometries of  a space-time act as topological 
transformation groups on its completion. 

Definition 1. Let H be a closed Lie subgroup of  Gl(n; ~) with natural 
injection j :  H---~ Gl(n; R). A principal fibre bundle H M  over M with struc- 
ture group H and projection II H is called an H-structure on M if there exists 
a bundle morphism 

u: HM---~ L M  

such that rI H =I I r .  o u and for all h ~ H, v ~ H M  

u o Rh(v) = Rj(h) o u(v) 

Such a map u is an imbedding and can be considered as a natural injection 
on the dosed submanifold H M  c_ LM.  

H M  R~ ) H M  

l 
L M  -----+ L M  R](~) 

Definition 2. I f  under the conditions of Definition 1 there exist connec- 
tions V on L M  and V' on H M  such that their connection forms satisfy (see 
1.5.6) 

co o Du = oJ' 

then the connection V is said to be reducible to H M .  In this case we can of 
course use co' to construct the Schmidt metric on H M  and so obtain a 
Cauchy completion _~M and b-H-boundary a.M by 

M'-'H --- H M / H  = M U ~HM 
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Now we can give a precise statement of Friedrich's result. 

Theorem. Let H be a closed Lie subgroup of GI(4; ~). If H M  is an 
H-structure on M to which a given Levi-Civit~t connection is 
reducible, then the completion _gn = M u OuMis homeomorphic to 
M =  M u S M .  

Outline of  Proof. (Full details are given in [25].) With the notation of 
Definition 2, u exists, is uniformly continuous, and so admits a uniformly 
continuous extension 

if: HM ~ LM 

The required homeomorphism is provided by 

f : M u - + M :  x~--~ II~o fro II~(x) 1 

We may expect the result to generalize to closed subgroups of Gl(n; R). 
In the other direction Friedrich pointed out a special case for a space-time 
manifold (M, g), where g is a Lorentz type metric (see Part III). 

Corollary 1. If (M, g) is a simply connected space-time, then the 
completion M~ constructed on the holonomy bundle is 
homeomorphic to M. 

Proof. Since M is simply connected, the holonomy group H is con- 
nected. Schmidt [54] has shown (cf. [25]) that the connected Lie subgroups 
of the Lorentz group are closed in GI(4; R). [ ]  

We offer another proof of this corollary in III.2.8. 

Corollary 2. If (M, g) is a space-time, then the completion M--o 
constructed on the orthonormal frame bundle is homeomorphic to 
M . � 9  

Completion via the orthonormal frame bundle is so much more con- 
venient for space-times that in Part III we shall abbreviate 2~r o to 2~ and 
80M to 8M. The same is of course true for Riemannian manifolds, and the 
important result for those is given in 3.7. 

k 

3. THE QUOTIENT TOPOLOGY OF M 

For each connected component L'M and its Cauchy completion/JM 
we have induced essentially the same quotient topology for M = L'M/G +. 
In fact M has a semimetric topology contained in the quotient topology. 
By construction M is connected, locally connected, and arcwise connected. 
It is second countable but need not be locally compact nor more than To. 
If M is a Riemannian manifold, then the bundle completion M via the Levi- 
Civit~ connection coincides with the direct Cauchy completion; this in 
particular persuades us of the mathematical significance of the b-boundary. 
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3.1. The Semimetric Structure p. There is a semimetric p for ~ r  with 

p(x, y) = inf{d(a, b)la ~ II(x~,), b ~ rl~,(y)) 

and the p-topology is contained in the quotient topology. 

Proof. Plainly p is a semimetric. It  determines a topology from the 
open bails of radius r, center x ~ ~r, given by 

S(x, r )  = {y ~ Pip(x, y) < r} 

The quotient topology is the family of sets 

{U __ ~t I I I~(U ) is open in / : 'M} 

We show that the quotient topology contains the p-topology by proving that 
IIzS is continuous in the p-topology. Without loss of  generality, consider an 
arbitrary x e M and an open set A.  of  the form 

a .  = {IIr,(b) e Mid(b, II~,(x)) < .} 

= { y e M [ p ( y , x )  < e}, for some~ > 0  

We find an open ball B(a, r) around any a ~ IIr~(A.) with d(a, II~(x)) 

Since s < ~ we can find a suitable r > 0 with r < E - s. Therefore 

a e B(a, r) = {e e L'MId(e, a ) < r} _c IIz~(A~) 

because 

d(c, II~,(x)) ~< d(c, a) + d(a, II~,(x)) ~< r + s < ~ �9 

3.2. If  L'M is complete and p is a metric, then M is complete. 

Proof (see Eells [21], p. 63). Suppose that L ' M  is complete, and let 
(x,) be a Cauchy sequence in M = L'M/G +. Using a subsequence if neces- 
sary, we suppose that 

p(x., x .+l )  < (1/2)" (*) 

Choose any bl E II~(xl) and b2 ~ II~,(x2) such that d(bl, b2) < 1/2. This is 
possible because by (*) we know that 

d(n~(x~), n~(x=)) < 1/2 

Choose ba E II~(xa) such that d(b=, ba) < (1/2) = and so on. The sequence 
(b,) so formed is Cauchy in L ' M  and so by hypothesis has a limit there, b~, 
which is unique. 

Define x| = IL.,(b~) e M. Then we have 

p(x., x| = p(IIv(b.), IIv(b~)) ~< a(b., boo) 
Hence (x.) converges to x. �9 
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We know from 1.3 that G + is not an isometry group for L'M, though 
it does yield isometrics on the individual fibres by 2.4. An isometric action 
would have caused the semimetric topology to coincide with the quotient 
topology (see Eells [21], p. 62). However, the action of G § is uniform, and 
thus it may be possible to exploit the isometric action on vertically separated 
points, in studies of bunches of fibres over appropriately "small" sets in _M. 

3.3. M is not 7"1 if the orbits of  G + are not closed in L'M. 
Proof. We prove the contrapositive form. Suppose M is 7"1. For all 

x ~M, {x} is closed, so Ml{x} is open in the quotient topology. Thus 
II~(~r is open in L'M. Hence/,'M/II(_~c~\{x}) = II~{x} is closed. [ ]  

It is known (see 1.1.3) that i f M  is 7"1 in the semimetric p-topology then 
~r is T~. and p is a metric. However, our previous result does not preclude 
the existence of sets in M open in the quotient topology but not open in the 
p-topology. 

From III.2.8 (for space-time M) we also obtain a homeomorph of 3~r 
if we use the quotient by the holonomy group of the completed holonomy 
bundle. Hence the current and subsequent results concerning M have similar 
statements for that situation; see the example in 3.4. 

3.4. _~ is T2 ~:~ graph G § is closed. M i s  Hausdorff if  and only if graph 
G § is closed in L ' M  x L'M. 

Proof(see Kelley [39], p. 98; Eells [21], p. 61). The method is interest- 
ing. Note first that graph G + is the equivalence relation 

A = {(u, Rg(u))lu ~[,'M, g ~ G + } 

and that M = [,'M/A. Also, the graph of Iu 

D = {(x, x) lx e_~} 

is an equivalence relation with MID ~ M and 

A = (II~, x IIr.)~D 

(i) Suppose M is Hausdorff. I f  (a, b)6 A, then there exist disjoint 
neighborhoods U of IIz,(a) and V of IIz,(b ) open in M--. (We use the quotient 
topology of course.) IIz~(U ), II~(V) are therefore open in / , 'M.  Moreover, 
no point of one lies on a fibre that meets the other: they are not A-related. 
Hence II~(U) x II~(V) is an open neighborhood of (a, b), disjoint from A. 
So the complement of A is open and A is closed. 

(ii) Suppose A is closed and Hr,(a) # IIz,(b) ~ M. Then (a, b) r A. But 
A is closed so there are open neighborhoods U, V of a, b respectively with 
no point of U in a fibre meeting V: they are not A-related. Hence IIr,(U) 
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and IIz.(V ) are disjoint and open neighborhoods of IIz,(a) and IIv(b) 
because by 2.2 IIv is an open map. I 

Corollary. I f~r i s  Hausdorff, then D is closed in ~r x ~t. Conversely, 
since the identity relation gives rise to an open projection 
_M-+ MID ~_ M, if D is closed then M is Hausdorff. �9 

Example. The holonomy bundle through (Co, b0) ~ L+R with constant 
connection ~ # 0 has a completion that by 1.5.7 and II.2.5 is uniformly 
equivalent to (see Example III.2.8 for details) 

((aXo + log bo, 0iv l/Ill} 

The structure group q~ is trivial, so we have Er _ ( -0% 1/] ~] 1. Furthermore, 
if  A is closed, then q~(A) = A is closed, so graph �9 is closed: we expect M 
to be Hausdorff. Clearly this is the case for ( -0% 1/[~[]. 

By taking (;txo + log bo) mod )l, we find the completion of the holonomy 
bundle through (xo, bo)zL+S 1 with constant connection h # 0. In this 
case, however, the holonomy group �9 is the integers (see 1.5.7) and therefore 
nontrivial. The orbit of �9 is an exponentially distributed copy of the integers 
which is not closed and so by 3.2 ~,1 is not expected to be 7'1. Consider the 
solitary b-boundary point f~ (see Example 111.2.8). Let A be an open set in 
the quotient topology for S~, with f~ c A. We shall see that A must contain 
all of S~ because the fibres in L+S~(xo, bo) over A must contain a family 
homeomorphic to 

{[((hXo + log b0)mod A, v)]l~ > v i> 1/1 1} 

for some real ~ > 1/[~1. But log (v]h[ - 1) -+ - o r ;  so as we have observed 
before, all fibres over ,~1 will be met by the inverse image of A. (See 1.4 
and [16].) We have seen that each holonomy bundle here appears as a 
vertical line v c [l/[A[, or) on the cylinder S ~ x [1/[hi, c~) in the standard 
metric. A typical closed set in this line is therefore [1/[A[, ~] for some 

> l/[A]. Its image by the integer group �9 is 

r = L) [Vial, a e  ~ + (1 - e  )/la I1 
/c~Z 

= [l/Ill, oo) 

which is not closed. 

3.5. Incomplete Fibres in the Full Metric.  Suppose that (un) is a Cauchy 
sequence in L'M without limit there and such that IIL,(u~) is contained in a 
compact subset of M. Then we have the following: 

(i) Some xo ~ M: Yi~,(Xo) is incomplete in the full metric. 
(ii) M is at most To. 



Space-Time Edge Geometry 435 

Proof. (Schmidt [55] established this result; we amplify his proof.) 

(i) By compactness in M there exists an infinite subsequence (u~) with 
IIv(u~) convergent to some x in M. Now if (u~) eventually lies in IIv(x), 
then by 2.3 it has a limit there if we measure distances along curves wholly 
in this fibre. Here, however, we use the full metric. Suppose that IIv(x) is 
complete in this metric. Then it is closed in L'M, and (u.) has a limit in 
II~(x) if it eventually lies in this fibre. By hypothesis this is not so, and hence 
we may suppose that for some N ~ 

d(u~, II~(x)) > 0 for n > N 

We can find vn E II~,(x) such that for n > N 

d(u ' ,  v.) = d(u~, II~.(x)) 
t t p Now, lim I I v (u . )=  x ::> d(u., v.)-+ 0 as n - +  c~. Therefore, (u.), (v.) are 

in the same equivalence class of the Cauchy completion; (v.) is Cauchy 
because as n, k ~ oo 

d(vn, v~) <~ d(v,, u'.) + d(u',, u'~) + d(u'k, vk)--~ 0 

It follows that 

lim (v~) = lim (u') e L 'MIL 'M 

so II3(x) is not complete because IIL,(lim (U~)) = X. 
(ii) From (i), II3(x) contains a Cauchy sequence (vn) without limit 

there. Suppose lim (v~) = v ~ L'MIL'M. Then for all neighborhoods U of  v 
we have 

u n I I~(x)  # z 

because v lies in the boundary of  II3(x). So if Vis open in Mwi th  IIv(v) ~ V, 
then also x E V so ~r  is at most To. [ ]  

Example. Consider L+S 1 with constant connection A # 0. Evidently 
S 1 is compact and contains the projection of the Cauchy sequence 

(v~): ~ ~ L + S 1: n ~ ((x0 - n) mod 1, e ~)  

That  this is Cauchy is clear because it lies on the finite (horizontal) curve 
in Case 2, Example 1.1, and so 

d(v,~, v~) < e -a~ = Ie -ak - e-a"l/lal 

We know that the essential part (see 1.3 and [17]) of L+S ~ is uniformly 
equivalent to 

W = ((u, v)lu E S L  v > 1/[AI} 
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with the standard metric. There our Cauchy sequence appears as 

n>-~ (hXo mod h, (1 + e-a")/la[) 

which has limit 

(hx0 mod A, 1/[al) ~ W\W 

Now as we see from its definition, (v,) does lie wholly in the fibre II~(x0) 
for any Xo e S t, so every fibre of L+S 1 is incomplete in the full metric. 
Schmidt [55] gave an example of  incomplete fibres arising from a two- 
dimensional Lorentz manifold. 

3.6. M is geodesically complete if L'M is complete. 

Proof (see Schmidt [55]). Suppose that (L'M, ( , )) is a complete 
Riemannian manifold. Then every Cauchy sequence is convergent in L'M, 
in particular so are those on horizontal curves (see III.2.7). In consequence 
any horizontal curve of finite length has endpoints in L'M. 

From 1.5.5 a curve in M is a geodesic if and only if it is the projection 
of an integral curve of one of the standard horizontal vector fields. By 
hypothesis these are complete, so geodesics in M can be extended to infinite 
parameter values. �9 

The converse is false. Geroch [29] gave an example of a space-time 
manifold that was geodesically complete but contained an inextensible 
timelike curve of bounded acceleration. 

3.7. If (M, g) is a Riemannian manifold then its Cauchy completion is 
homeomorphic to its bundle completion with the Levi-Civit~t connection. 

Proof (see Schmidt [55]). We work with the bundle O+M of ortho- 
normal frames (cf. 2.5) and the distance function do induced on it by in- 
clusion in the Riemannian manifold (L+M, ( , )). We also have a distance 
function dg on M by 1.2.4. It is sufficient to show that for all x, y e M 

do(II3-+(x), II~-+(y)) = dg(x, y) 

Suppose c is a curve in M with horizontal lift ct to O+M. Then we have 
(see 1.2) 

IIo(t) l l~ = [ [ot( / ) l [  = I I O ( o t ( t ) ) l ! o  

because t3 effectively expresses d with respect to an orthonormal basis, and 
in such components II Hg appears as the standard norm on N". Thus ct has 
the same length as e. If  c* is a nonhorizontal curve in O +M, that also projects 
onto c, then its length will be greater because the connection-form-term 
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lloJ(d*(t))II0 is not then zero. The metrical equivalence of c and et is inde- 
pendent of the choice of orthonormal frame through which the lift is made. 
The fibres are equidistant throughout their extent, and the result follows. �9 

As pointed out by Schmidt, the coincidence of M with the Cauchy 
completion when it is available does encourage the view that it is the natural 
choice for general manifolds with connection. Certainly this seems to be true 
for pseudo-Riemannian cases, for it is a recent result of Stredder [59] that the 
metric tensor field determines the Levi-Civit~ connection merely by requiring 
that it constitute no additional structure, in the sense that it is natural with 
respect to restrictions. For the present we use 3.7 in establishing the following 
proposition and corollary. 

m 

3.8. M need not be locally compact. 

Proof (Schmidt [55]). Let •2 have its standard metric structure, and 
define the subset 

A = {(x, sin l/x)[x # 0} w {(0, Y)I lYl ~< 1} 

This A is closed, so M = R2\A is a Riemannian manifold; we denote by 
M -  the connected component of (0, - 2 ) e  M. By 3.7 we can effect the 
Cauchy completion and find the b-boundary 

~M- = {(x, sin 1/x)lx # 0} w {(0, - 1)} 

Therefore .~ -  = M -  u 8M- is not locally compact because (0, - 1 )  has 
no compact neighborhood. �9 

Corollary (Hawking and Ellis [35, p. 283]). Whereas the origin 
(0, 0) is in the topological boundary 3~/- of M - ,  there is no curve 
in M -  with endpoint there and so the origin is not in the b-boundary 
(see 1.1.12). �9 

Consider the Riemannian submanifold 

M = R2/{(0, Y)I lY[ ~< 1} 

For each (0, y) with 0 < y < 1 there are two points in the b-boundary ~M. 
Note that the manifold distance structure induced by the standard Rieman- 
nian metric on R 2 differs from the usual topological metric, since it involves 
an infimnm over curves in M. Hence the distance of (1/n, 0) from ( -  1/n, O) 
tends to 2, for the minimizing geodesic must pass through (0, 1) or (0, - 1). 
In contrast, the Euclidean distance between these points is 2/n, which tends 
to zero. 

3.9. b-incompleteness of curves in M. A curve c in M is said to have 
finite bundle length if it has a horizontal lift c~ of finite length in L'M. This 
attribute is independent of the choice of point in Hz~(c) through which the 
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lift is effected, for we have the property 1.5.1(ii) of connections that assures 
us that the action of G § maps horizontal curves among themselves, and 
transitivity guarantees that the process is surjective; uniform continuity as 
displayed in 1.3 preserves the finiteness. (See [35], p. 259.) 

A curve c: [0, 1 ) ~  M is called b-incomplete if  it has finite bundle 
length and admits no continuous extension in M to domain [0, 1]. Evidently, 
the definition extends trivially to any (piecewise-C 1) reparameterization of 
the curve. From 1.4 it is clear that the b-boundary consists precisely of  the 
endpoints in ~r of  b-incomplete curves in M. We call M b-complete if 
8M = ~ ,  otherwise M is b-incomplete. 

We have seen in 3.5 that a nonconvergent Cauchy sequence in L'M 
whose projection is trapped in a compact set of  M implies incomplete fibres 
and consequential loss of separation facilities in M. Here we give a formula- 
tion in terms of b-incomplete curves, due to Hawking and Ellis. 

3.10. Imprisoned b-incompleteness. A point x ~ M is not Hausdorff 
separated in M from a point y ~ OM if there is a b-incomplete curve c in M 
which has x as a limit point and y as an endpoint in M. 

Proof(Hawking and Ellis [35], p. 289). For  the given curve c there is 
a horizontal lift ct with an endpoint b which by hypothesis is such that 

b E II~(y) _c E'MIL'M 

Let V be an open set, containing y, in .M. Then II~,(V) is open in L'M; since 
it contains b, it also contains ct(t) for all t greater than some tin. But then 
all points c(t) for t > tm must lie in V. Hence V meets every neighborhood 
of x because x is a limit point of c. [ ]  

We see that this type of  boundary  point generated by imprisoned 
b-incompleteness is qualitatively different from the situation of supplying 
points that previously were omitted when M was part of a larger (Hausdorff) 
manifold. Hawking and Ellis have pointed out that in Tau b -N U T space- 
time (see [35], pp. 289, 170-178) there exist b-incomplete null geodesics 
totally imprisoned in compact sets. 

3.11. A b-boundary contains the topological boundary. Let U be an open 
submanifold of  M such that its closure U c is compact in M. Then 0 ~ 8U. 

Proof. Since U is a submanifold, L'U, [,'U, and ~U are well defined. 
We may as well suppose 0 ~ ~.  For  all x s t) = UC\int (U), we have x r U 
by the openness of U (see 1.1.12). For  the same reason we can find a curve 
c: [0, 1) --~ U with endpoint x. 

Choose any bo E II~(c(0)), and through it construct the unique horizontal 
lift ct. The latter curve possesses an endpoint 

bl ~ II~,(x) ___ L 'U  
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by compactness. Hence for all large enough n ~ N, ct eventually lies in the 
open ball 

S(bl, I/n) ~_ L 'U 

Therefore, we can connect bl to some point on ct in L'U by a minimizing 
geodesic of finite length. The projection of this geodesic is a b-incomplete 
curve in U, and since its endpoint is x we have x e 0U. Therefore f) c 0U. [ ]  

Schmidt [56] has shown that every point in a space-time manifold 
(see Part III for definition) has an open neighborhood U such that 0 = OU. 
This property, called local b-completeness, is a nontrivial consequence of  
the fact that every point in a space-time has a normal coordinate neighborhood 
in which no geodesic is imprisoned (see [41], p. 149; [35], p. 34). 

3.12. M is b-complete if L 'M is complete. 

Proof. Suppose that c: [0, 1) -+ M is a b-incomplete curve. Let c1' be 
its horizontal lift through some bo ~ IIv(c(0)). Now ct has finite length in 
L'M, but by continuity of IIz. it has no endpoint there. Hence it contains a 
nonconvergent Cauchy sequence. Thus if  M is not b-complete, then L 'M 
is not complete. [ ]  

Example. Hawking and Ellis ([35], p. 278) proved that if M is a 
space-time, then a converse is also true (see III.l.1): a space-time M is 
b-complete if and only if O+M is complete. This converse to 3.12 depends 
on the aforementioned local b-completeness that is enjoyed by space-times 
by virtue of their Lorentz metric. Schmidt [56] pointed out that on E2 there 
is a connection with respect to which no point is locally b-complete, namely, 
that V which in the standard chart has components at (x 1, x 2) E R 2 given by 

I'~t = x 2, F~2 = - x  1, otherwise F}k = 0 

The required property was established by the following geometrical argument, 
clearly of considerable power. 

(i) N 2 is simply connected, so by 1.5.7 for all u s L + R  2 we have 
*(u)  = , ~  

(ii) V is analytic on the frame bundle and thus, by Kobayashi and 
Nomizu [41], p. 153, q~~ is determined by the successive covariant differen- 
tials of the curvature tensor (see 1.5.14): R, VR, V2R . . . . .  at IIL,(u). 

(iii) At the origin in R 2 we find VR = 0, and there the only nonvanishing 
components of R are 

R~12 = R~lz = 1 

Hence the action of r on tangent vectors at IIz,(u) is given by 
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(iv) We can choose a closed curve through the origin on which the 
parallel transport corresponds to R, with e ~ < 1. Then for successive cir- 
cuits of this curve the horizontal lift has monotonically decreasing tangent 
vector. Hence for infinitely many circuits the bundle length is finite and we 
have a b-incomplete curve. The process is applicable at all points. Moreover, 
arbitrarily small neighborhoods can contain b-incomplete curves, implying 
contributions to their b-boundary that have no counterpart in their topological 
boundary. 

By way of illustration here, we shall calculate the holonomy group at 
the origin and display the b-incompleteness. Consider the following closed 
curve c, consisting of four parts c~, c2, ca, and c~, all with domain [0, ~] 
for some E > 0. 

[ c~: t ~ (t, O) 

c2: t~--> (~, t); 
c "  

ca: t~--> (~ - t, ~); 

c4: t~-> (0, ~ - t); 

d~(t) -- (1,0) [ 

e~(t) = (o, 1) 

e~(t) = ( - 1 , o )  
d4(t) = (0, --1) T " " 

Thus, the image of c is a square of  side ~, with first corner c1(0) = (0, 0) and 
lying in the upper right-hand quadrant of R 2. Evidently it is dosed and 
homotopic to zero. Let (A81 + B82, Ca1 + D82) be a basis for T(0.0)R2; 
we find ct, the horizontal lift of  c through this point in L + R 2. 

The required curve is given by (see 1.5.4) 

c t :  t ~ (c ( t ) ,  x / ( t ) e j )  

where the matrix of functions XJ: [0, r ~ R satisfies 

We deduce the following solutions for the four parts. 

Be"]} c2t: t~--~ (c2(t), [ A DeaJ/ 

cst: tv--~ (ca(t), [Ae't Be'"] 
[Ce "t Dew'J) 
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Hence the corresponding element of dO ~ R + is e ~2, for each ~ > 0. (The 
inverse element corresponds to a curve with the same image as e but having 
a clockwise sense of  direction around the square instead of  counterclockwise.) 

The bundle length of  e is the length of  ct, which is the sum of the 
lengths of  the four parts (see 1.2) 

where (f~kO -- (XkJ) -1. Plainly this length is finite; we denote it by Lo. 
Now consider the curve coo which is the countably infinite composition 

of c with itself, corresponding to an unending series of  circuits round the 
image of c. From the preceding comments and the definition of  the bundle 
metric in 1.1, it is easy to see that the bundle lengths of successive circuits 
decrease with constant factor e -~2=  r, say. It  follows that the bundle 
length of  coo is 

~ Lor ~ 
= 0  

which exists and is finite for 0 < r < 1, by the property of geometric series. 
Thus coo is a b-incomplete curve, in •2 with the given connection. Finally 
for any neighborhood of  the origin in ~2 we can choose E > 0 so that c 
lies in this neighborhood. Likewise for other points in R 2. We note that, 
rather like the situation in Example 2, 1.4, the horizontal lift of  co~ is an 
exponential spiral up the frame bundle, albeit on a square base here. 

3.13. Projection of Finite Incomplete Curves. The projection of a finite 
incomplete curve in L'M is a curve of  finite bundle length. 

Proof. We suppose that L'M is incomplete and that there exists some 
(piecewise-C 1, as usual) curve 

c*: [0, 1)-+L'M 

which admits no continuous extension to domain [0, 1] and which has 
finite length. We shall take the horizontal projection of  c* and show that 
it is the horizontal lift with finite length of  the projection 

IIL, o c* = c: [0, 1) -+ M 

The property 1.5.1(i) of  connections gives us a smooth decomposition 
of the tangent vector to the curve c*, as 

e*(t) = e*~(t) | e*(t) 

Therefore we have a piecewise-continuous horizontal vector field e* along 
c*. By the fundamental theorem for ordinary differential equations the field 
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d* has a unique piecewise-C 1 integral curve cn with dH = d* and ell(0) = 
C*(0). By our construction it is clear that c~ has the same projection, c, as 
C*. 

IIr, o cn = IIv o c* = c: [0, 1)---~ M 

Now every horizontal vector field on L ' M  is the horizontal lift of  some vector 
field on M [see 1.5.3(v)]. Also, from the isomorphism property in 1.5.1 we 
have 

DIIv(d*(t)) - DIIv(d*(t)) = DIIv(dn(t)) = e(t) 

which by 1.5.4 ensures that CH is precisely cf, the unique horizontal lift of  
c through c*(0), perhaps with some constant sections included, where c* 
was vertical. 

The bundle length of c is (see 1.1, 1.2.4) 

[[d'(t)]l dt = I[e*(t)ll dt 

which cannot exceed the given finiteness of 

f~ II~*(t)ll dt 

because 
]id*(t)]! 2 =  I]O(~*(t))[[o~ + ll~o(~*(t))[Io ~ 

_-IIO(~*(t)) l lo2 + IIo~(~*(t))[Io ~ 

= II~*(t)ll~ + IIo~(~*(t))llo ~ 

Thus c, the projection of the finite incomplete curve c*, has finite bundle 
length. �9 

To strengthen our result to a full converse of 3.12 we seem to need more 
structure than a mere connection. For  example, Hawking and Ellis [35] 
have shown that in a space-time a projected curve of finite bundle length 
has no endpoint and is therefore b-incomplete. Their proof  of the result 
corresponding to 3.13 differs from ours (see III.l.1). The sufficiency of  a 
space-time in providing the extra structure required by Hawking and Ellis 
is implied by a lemma of Schmidt [56]. We can see what is needed by the 
following argument. 

We try to contradict the supposition that c, in the proof  of  3.13, has an 
endpoint x in M. Thus there is a continuous extension of c 

g: [0, 1] - +  M,  with  g(1) = x 

such that for all neighborhoods N of x there exists tz~ e [0, 1) with 

g(t) E N  f o r t  > tN 
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We know that II~(N) is open in L'M and that it contains ct(t) for t > tu. 
I f  they exist in L'M, the limits 

lira et(t) and lira c*(t) 
t--*l t--*l 

must lie in II~(x), which is contained in 1-IF(N), The Lorentz metric struc- 
ture on a space-time allows us eventually to trap et and e* in a compact 
subset of II~,(N) and so guarantee the existence of the limits to contradict 
the condition that e* is without endpoint. This derives from Schmidt's proof 
[54] that the connected Lie subgroups of the Lorentz group are closed in 
G/(4; •). See Friedrich [25] for comments and applications to the case 
of simply connected manifolds for which the holonomy group is connected 
(cf. 2.5), 



Part HI. Geometrical Singularities in Space-Time 

This section is designed to be complementary to chapter 8 in Hawking 
and Ellis [35], which thoroughly states the position in 1972 (see also Sachs 
and Wu [531). 

We suppose that space-time is a connected four-dimensional, Hausdorff 
oriented maximally extended smooth manifold M with a Lorentz metric 
tensor field g. It follows that (M, g) is paracompact and hence regular and 
normal. The further physical requirements of local causality, local conserva- 
tion, and Einstein's field equation (see 1.3) are developed in [35], chapter 3, 
and in [16], chapters 11 and 12 with more pictures and motivation. We 
further suppose that (M, g) is time-orientable (see [35], p. 181 ; 2.1). There 
are then good reasons (see [35], p. 182) for believing that (M, g) is also 
space orientable. In that case, simple connectedness is a sufficient condition 
for the existence of a global spinor field by Lee [46] and hence a parallelization 
(see 1.2.7) by Geroch [27] (see 3.8, 4.3). 

The geometry of space-time reflects physics by the curvature tensor R, 
so we certainly want it to be continuous (or perhaps just locally bounded, 
C~ Then Clarke [12] showed that every point has a neighborhood about 
which g can be expressed as C 2 (or C 2-) functions of some coordinates. 
For a discussion of the classification of curvature tensors via critical point 
theory and relations to the standard Petrov scheme, see Thorpe [61, 62]. 

The reasonable local properties that necessarily come with a Hausdorff 
topology and a Lorentz structure enabled Geroch [27] to establish para- 
compactness for space-times (see also [35]; 4.3). This deserves some com- 
ment, for by 1.2.6 our space-time will therefore admit a Riemannian metric 
and so be metrizable (see [35], p. 38, for an explicit construction). However, 
there are many choices for this metric and only rarely might some be dis- 
tinguished. Thus a Cauchy completion based on a metric induced by the 
paracompactness of the space-time is unlikely to be of physical significance 
in supplying substitutes for "singular points." On the other hand, Schmidt's 
metric derives from the connection whose curvature is controlled by the 
disposition of matter; so the physical relevance is assured, and it is reinforced 
by the essential uniqueness of the b-completion. Hence we see a strong case 
to proceed with the following definition. 

By a singularity in M we mean a point in the b-boundary OM, induced 
by the Levi-Civit~t connection of g (see 1.5.9, lI. 1.4). If M is bundle complete 
(see II.3.9), then it is geodesically complete (see 1.5.13) but not conversely, 

445 
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by the example of Geroch [29]. The four pioneering singularity theorems of 
Penrose and Hawking give sufficient conditions for timelike or null geodesic 
incompleteness. Either would imply b-incompleteness and probably also 
points of unboundedly large curvature (see 1.3 for a statement of one of the 
theorems and 4.2 for Clarke's [10] result on the growth of curvature near a 
singularity.) 

We know from II. 1 that OM is calculated from L ' M  by the factorization 
.L'M/G + where G + is the identity component of Gl(4; R). However, for 
our space-time (M, g) we can work with O§ the positively oriented 
component of the dosed subbundle of orthonormal frames OM where 
(see II.2.5) 

O M  = {(x, (X~)) ~ LMIgx(X~, Xj) = g~j} 

and (g~j) is the diagonal matrix ( - 1 ,  1, 1, 1) that fixes the signature of g, 
in agreement with [35]. The structure group for OM is the Lorentz group, 
which we shall denote by 0(1, 3) and which consists of all nonsingular 4 x 4 
real matrices (a~ *) such that (see Example 2, 1.3.1) 

a~ggkzaj ~ = g,j 

This is a six-dimensional Lie subgroup of Gl(4; R). We shall find it convenient 
to abbreviate 0(1, 3) to 0 and denote its identity component by 0 § Then 
the b-boundary is given, up to homeomorphism (see II.2.5, Corollary 2), by 

~M = O+M/O+\M 

This is well defined because we take the restriction to O+M of Schmidt's 
metric ( , ) for L+M (see II.1). We shall denote the induced topological 
metric (see 1.2.4) on O+M and O+M by d and d, respectively. The canonical 
projections are denoted 17o+ and IIo+, respectively. 

1. SUMMARY OF RESULTS IN HAWKING AND ELLIS [35] 

The results on b-completeness available in 1972 were given by Hawking 
and Ellis [35], pp. 276-298, so we comment on them only briefly here. The 
most important is 1.1, which we mentioned in the examples of II.3.12. The 
others consider the character of singularities and analyze the situation of 
imprisoned b-incompleteness, which we met in II.3.10. 

1.1. (M, g) is b-complete if and only if (O+M, d) is complete. A proof 
is given in [35], pp. 278-282. The sufficiency of the completeness of (L'M, d) 
holds for any manifold with connection (see II.3.12). The necessity (for 
O+M) depends on the existence of normal neighborhoods, of all points of 
(M, g), wherein geodesics are not imprisoned (see II.3.1 I). The proof of this 
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necessity is in two parts: Given a curve c* in O + M of finite length but without 
endpoint there, then IIo. o e* = c, which is necessarily a curve in M, is such 
that 

(i) c has finite bundle length: f [[ ll < co. 
(ii) c has no endpoint in M. 

In [35] the proof of (i) depends on the fact that any matrix (a/) e 0(1, 3) 
can be decomposed as a product 

o  0000 001 
sinhx 0 0 c o s h x ]  

where A and B are 3 x 3 orthogonal matrices. This is also used in the proof 
of (ii), together with the compactness of the orthogonal group, following 
Schmidt [56]. We did of course prove a more general version of (i) in II.3.13, 
but there we wielded a fundamental theorem for the purpose. 

1.2. The Character of  the Singularities. The Penrose and Hawking 
singularity theorems show that a space-time (with physically reasonable 
properties) is geodesically incomplete if the metric g is of class CL However, 
b-incompleteness is well defined even if g is only of class C 1-. [By C r- is 
meant that in local coordinates the rth partial derivatives of the components 
of g exist but satisfy only the Lipshitz condition, in the standard norm 
for coordinates.] Hawking and Ellis were able to show (see [35], pp. 284- 
289) that sufficient force persists in the theorems for a C 2 - metric to preserve 
their results. See also Clarke [10] and 2.9. 

Hence the singularities are likely to be points of unboundedly large 
curvature (unboundedly large tidal forces in physical terms) rather than mere 
discontinuities of curvature. Moreover, the evidence was fairly convincing 
that average values of curvature taken over any compact neighborhood of 
such a singular point would also be unbounded. Our firm belief in local 
causality and conservation leaves the implication that Einstein's field equation 
breaks down, together with the rest of normal physics, in the vicinity of these 
singularities. 

Proposition (Hawking and Ellis [35], p. 290). Suppose that x e M 
is a limit point of a b-incomplete curve c (a case of imprisoned 
incompleteness; see II.3.10) and that at x (see 1.3) 

R~jKiK j r 0 

for all nonspacelike vectors K. Then it follows that in some basis 
parallel propagated along c, some component of the curvature 
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tensor becomes unbounded; so x is a p.p. curvature singularity 
(see [35], p. 260; 4.2). �9 

This situation actually occurs in T a u b - N U T  space because it is devoid of 
matter. It  led Hawking and Ellis to characterize such unrealistic behavior 
in the following way. 

1.3. b-Boundedness of  Space-Times. The idea here (see [35], p. 292) is 
to define a topology on a set of curves with a view to distinguishing those that 
display imprisoned b-incompleteness (see II.3.10). The method is to construct 
a covering space (see 1.1.13 and 1.4.6). 

We define 

B + M  = {(c~, v)[v EL+M; cv is a C 1 curve in M, with no endpoint except 
c~(0) = II~+(v)} 

and we suppose that each curve c~ is parameterized by bundle length with 
respect to the horizontal lift c~ t of  c~ through v. For  all open sets U _~ M 
and V _~ L + M w e  define 

U �9 V = {(c~, v) s B+Mlcv intersects U and v ~ V} 

Such sets form (a subbasis for) our topology for B+M. 
We have a map analogous to that in 1.5.11 

~xp: B+M>+ M: (c~, v)F-> co(l) 

with domain contained in B + M (see 1.2). Plainly, if M is b-complete, ~xp 
will have domain B+M; it is in any case continuous. 

Hawking and Ellis defined M to be b-bounded if (see I. 1.12) 

Wcompact  in B + M  ~ (l~xp W) c compact in M 

This provides the desired separation of  cases for the following reasons: 

(i) If  M is b-complete, then M is b-bounded, by the continuity of J~xp 
on the whole of B + M. 

(ii) T a u b - N U T  space-time (see [35], pp. 170-178, 289-292) is b-bounded 
but not b-complete. 

Example. Support for our geometrical intuition can be found by con- 
trasting the situations for R and S 1 with constant connection A ~ 0. We 
know that both of these are b-incomplete; we show that R is not b-bounded 
but S 1 is b-bounded. (See II.1.4 for the b-boundaries.) 

A family of elements in B + R is generated by taking m ~ R and (cb, b) 
such that 

( x , b ) ~ L + R ,  co: t~+ x + m t  

Clearly this whole family is contained in a compact set W c B + R induced 
by taking 

x~ <~x~<x2, b~ ~<b~<b2 
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But then (~xp W) c = R, which is not compact. 
The corresponding situation for S 1 has a family 

(cb, b ) : ( x , b ) ~ L + S  1, cb:t~-->(x + m t ) m o d l  

This family is certainly typical; it covers S 1 with every member curve. But 
now the ~xp image of the compact set corresponding to W has compact 
closure. 

We return to a space-time M to state the theorem of Hawking and Ellis 
[35], p. 292. 

Theorem. A space-time M is not b-bounded if the following 
conditions hold: 

(i) R~jK~K j >1 O, for every nonspacelike vector K. 
(ii) There exists a compact spacelike three-surface S, without 

edge. 
(iii) The unit normals to S are everywhere converging (or 

everywhere diverging) on S. 
(iv) The energy-momentum tensor T is nonzero somewhere 

on S. 
(v) T~jK~K j >1 0 and T~YK~ is zero or nonspacelike for every 

nonspacelike vector K, with T~jK~K j = 0 only if T~JK~ = O. 

Remark.  Einstein's field equation is of course implicit in the physics 
of this result, linking the Ricci tensor to the energy-momentum tensor in 
coordinate form by (see 1.5.14) 

8zrT~ s = R~j - �89 R is the scalar curvature 

However, the proof does not use this equation. It uses only the inequality 
(i), which amounts more or less to the requirement that gravity is attractive, 
a feature that any competing theory must share with general relativity (see 
also the proposition in 1.2). 

The first three conditions are sufficient to establish that M is not timelike 
geodesically complete and hence not b-complete (see [35], p. 272). We note 
that local causality is not used in this theorem; violations of causality are 
insufficient to prevent the singularities. 

Condition (iv) defeats the Taub-NUT space-time: it has T = 0 every- 
where. 

2. DEVELOPMENTS IN OTHER BUNDLES 

We have defined the b-boundary via the frame bundle (see II. 1.1), and 
we have seen how the metric structure for space-time (M, g) yields the same 
b-boundary through the bundle of orthonormal frames. Now we follow 
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Sachs [52] in another homeomorphic formulation via a subbundle of the 
tangent bundle. There are two points to observe here. First, Sachs makes 
explicit use of the time-orientability that we have assumed for space-time. 
Second, in his bundle metric Sachs actually incorporates g itself; this is a 
stronger role than that of  merely determining the Levi-Civifft connection 
and may be more significant physically. Duncan and Shepley [19] have shown 
that the homeomorphism found by Sachs with the b-boundary can be 
simplified by modifying the classes of Cauchy sequences that determine it 
from the tangent bundle. The modification is in fact a hybrid scheme, using 
the Sachs metric to ascertain the Cauchy property and the Schmidt metric to 
compare limits, for sequences of unit timelike vectors. The main result of 
this section is again due to Schmidt: holonomy bundles generate the same 
b-boundary as frame bundles. 

Hfiji~ek and Schmidt [32] had previously shown how to extend the 
completion of the frame bundle to yield a completion of any associated 
bundle. Thus they obtain completions of all tensor bundles T~kM and in 
particular of the tangent bundle. Moreover, they revealed the structure of 
the fibres of these bundles over boundary points in M. In general these fibres 
do not have the vector space structure that is enjoyed by fibres over points 
of M. So though a limit of any tensor field can be found on ~M, it will only 
be a multilinear function on nondegenerate fibres. 

2.1. The Unit Future Subbundle U+M c TM. The time-orientable 
property of (M, g) provides a continuous partition of nonspacelike tangent 
vectors into two classes: future directed and past directed. (See Hawking and 
Ellis [35], ch. 6, devoted to causal structure for space-time.) The unit future 
bundle of (M, g) is the subbundle 

U § M = {(x, X) E TM]X is unit timelike and future directed} 

with projection Iltr: U§ M, a surjection induced by the inclusion map 
~: U§ ~ TM. 

Recall that lrM is the space of all (TM-valued) smooth fields on M 
(see 1.21; Example 3, 1.4.3). We shall denote by YU§ the space of all 
TM-valued smooth fields on U§ It is known (Bishop and Goldberg [5]) 
that YU+M is spanned by the restrictions 

{w o Iltrlw E I"M} 

Use of this fact allows us to arrive at the same result as Sachs [52] but in a 
manner more consistent with our previous development. 

The Levi-Civifft connection V induced by g gives a map (see 1.5.2, 5.9) 
for all x ~ M 

V: TxM x YM---> TxM: (a, w)-+ V~w 
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We can form a corresponding map 

V*: TxU+ M x YU+ M---~ T=M: (A, w o II tT)---~ VDr~vaW 

for all X e  U + M  with l'Iv(X) = x e M. In fact V* is a connection over 1-Iv, 
in the terms of Bishop and Goldberg [5], p. 223. Thus A ~ T x U + M  is 

vertical* ~ D I I v A  = 0 

horizontal* ~ VDa~A~ = 0 

where we have regarded the inclusion map ~: U + M ~ +  T M  as an element 
of Y U  + M.  

Example.  Consider the pseudo-Riemannian cylinder (N, g) of Example 
2 in 1.5.9 (see Bosshard [7], Dodson [15]). 

N = {(~b, or) s N21~b e (0, 2zr), cr e [0, 270 ~ S 1} 

1 o], 
U + N  = ((~b, ~r, r, s)  ~ TN[r  = ~/s  2 + (1 - cos ~b) -2, s ~ ~} 

Here we have arbitrarily assigned "future directed" to "increasing 4, co- 
ordinate." We summarize the aforementioned maps, for x = (~b, ~) and 
X = (~b, ~, r, s) ~ U+N. Let A ~ T x U + N  be abbreviated to (X, x, a); so x 
is the component "along N "  and a is the component "up TN,"  at X ~ U+N. 
We find the following: 

DIIt~A = (x, x) E T x N  

,(X) = (x, (s 2 + (1 - cos ~b)-2) 1/2, s)  E T x N  

VDnuA~ = Vx~ ~ T=N = x~(Sk~ ~ + Pj~d)8i 

when x = Xk~k and XTejOk = I'j~O, in a chart about x (see the example in 
1.5.2). Note that D I I u A  need not be timelike, though by definition fiX) must 
be. We shall see that Vor~uA~ is always orthogonal to e. 

2.2. The Sachs metric for U + M. There is a unique Riemannian metric 
on U + M  such that for all A ~ T x U + M  and 1-Iv(X) = x, it agrees with the 

quadratic form given by 

~x(A, A) = gx(DIItTA, D I I v A )  + 2(g,(DIIvA, ,(X))) 2 

+ g~(Vzm~#, Vonua0 

Proof. We assume bilinearity; then the expansion of  i x ( A  +_B, A +_B) 
yields i x (A ,  B)  for all A, B e  T x U + M .  Hence we have a bilinear form ~, 
evidently smooth by the smoothness of the maps we are using, so f~ ~ Y2U+M. 
It remains to prove positive definiteness. 
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Since ~(X) is always unit timelike, we can choose an orthonormal frame 
(bl, b2, b3, b~) for TxM with ~(X)= bl. Then for some real a t we have 
DIItrA = a~b,, and the first two terms in the expression for f~x give 

( - ( a l )  2 + (a2) 2 + (aa) 2 + (a0 2) + 2( -a~)  2 >/ 0 

with equality if and only if #b~ = 0. Hence the first two terms are positive 
definite, taken together. 

Next we prove that VDavaL is a field always orthogonal to the field ~. 
But the Lorentz property of  g guarantees positive definiteness on the orthog- 
onal complement of  a timelike vector field, so the desired result follows 
for g. 

We use the compatibility of  the Levi-Civit~t connection V with g in 
the form [16] 

x(g(,, *))x = 2gx(Vx,, Ox 

In our case x = DIIvA, some derivation on smooth real functions about x 
(see 1.2.1). However, the real function g(L, ,) is constant because ~ is a unit 
timelike field, so as required 

gx(VDrlvA ~, 0x = 0 �9 

The elements of  this proof  can be found in the article of Sachs [52], 
with some difficulty. 

Example. We display this orthogonality for the pseudo-giemannian 
cylinder (N, g) of  the previous example. The identity chart gives a basis 
(~ ,  ~2)x for the tangent space TxN at each x = (~, ~) E N. We take 

X = (x, (~/s 2 + (1 - cos ~b) -2) s) e U+N, DIItTA = x'O, 

and obtain the following expressions 

,(X) = Vs  2 + (1 - cos ~b)-2~ + s~2 

( - x  1 sin ~b(1 - cos ~b) -3 
V D ~ =  Vs ~+(1-cos~)-~ 

sin ~b ) 
+ (1 --co-s ~b)(xl ~/s2 + (1 - cos ~b) -2 + x2s) ~1 

( sinq~ ) 
+ "(1 ---~s ~) (x~s + xz Vs2 + (1 - cos ~b) -2) ~2 

Application of gx gives the required result. 

2.3. The projection IIo~: O+M--~ U+M is uniformly continuous. We 
suppose that (O+M, d) is the metric space obtained via Schmidt's metric 
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(see II.2.5 and the introduction to this part) and that (U+M, d ~  is the metric 
space available (via 1.2.4) from the Riemannian manifold (U+M, ~) of Sachs. 
It is sufficient to establish uniform continuity (see 1.1.9) if we show (see 
II.1.3) for all b E O+M and all Y e  TbO+M that 

( w  > 0 ) 0 ~  > 0):  II r l l  < 8 ~ IlDrIo~rtl~ < ,  

Here II ]! is the Schmidt norm and ][ [[A is the Sachs norm induced by 
on tangent vectors to U § 

Proof. The maps IIotr and DIIotr are well defined and have the fol- 
lowing local expressions using a chart about x ~= M giving rise to local basis 
fields (~0: 

IIov: O+ M--+ U+ M: (x, b / ~ )  --+ (x, b~a~) 

DIIou: TO+M---> TU+ M: (x, b /~ ,  X ~, B / )  --> (x, b~O~, X z, B~ ~) 

Take the arbitrary Y = (x, b/,  X ~, Bj ~) e ToO+M, the ~ in the second 
location can now be dropped. From Example 2, 1.5.6, we know how Y 
splits into horizontal and vertical components, Y = Yn @ Ya. Then, as in 
II.3.13, we exploit the properties of O and co to give 

II rll ~ =  IIO(Y,,)l[g + [I,o(Y~)llg " 

where (II.1.2) II II0 is the standard norm on R ~ for any m. It follows that 
k t l i - II Yl[ = = II(b/)-~(x') l lJ + N(B/+  b, r~ ,X)(b; )  ~l[o ~ 

4 4 

S - J .  f , ] = I  

where (~) and (fi/) are the components of XZ~ and B / ~  with respect to the 
orthonormal frame (bj~0. 

We know, by Definition 1.4.4, that DHou Y~ = 0, so it is only necessary 
to calculate ][DIIov Y~[[A. 

pr imo  Dno~(r~, )  = (x, X')  

,(b) = (x, b?) 

VV~.owo~<rR~L = (X, X~zbl  ~ -- B1 ~) 

[IDIIouYH^ 2 = g , j X ' X  ~ + 2(g, yX'bl') 2 

+ g~l(XlOzbx t -- B1 ~, X~Olbj - B j )  
4 4 

l = 1  ~ = 1  

This is to be compared with (*). We see that 

I l D I I o ~ r l l A  2 < 11YII 2 

and the result follows. I I  

(**) 
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Corollary 1. We know that the metric space (O+M, d) is dense in 
its Cauchy completion (O+M, d) (see 1.2.4). Also, the Cauchy com- 
pletion (U§ d~0 is well defined for the Riemannian manifold 
(U § M, f~). Hence, by I. 1.10 there exists a (unique by I. 1.5) uniformly 
continuous extension of How given by 

IIoe: O+M'--> U+M, HOeIo+M = IIoe �9 

We have yet to prove that Hoe is surjective. 

Corollary 2 For all u, v ~ O+M 

d (noe(u), hoe(v)) d(u, v) [] 

2.4. The extension Iloe: O§ U+M is surjeetive. 

Proof. Suppose not; then there exists a Cauchy sequence (y~) in 
U+M with limit y such that 

y ~ U+M\IIoe(O+M) 

Moreover, Iloe is continuous by Corollary 1 in 2.3, so it preserves the 
limits of convergent sequences. Hence if (u~) is a sequence in O+M, with 
Iloe(U~) = y~ for all n, then (u~) is not Cauchy. For if it were, then it would 
converge in O+M and its limit would necessarily project to y, contrary to 
hypothesis. This is the contradiction that we find: we lift (y~) to a Cauchy 
sequence in O+M. 

The Cauchy property of (y,) implies the existence of a family of curves 
{c~: [0, 1) '- ,  U+MIv ~ 1~} and a real sequence (t~) c [0, 1) convergent to 1 
such that 

(i) (Vv, n e I~) c~(t~) = y~ 
(ii) (Ve > O)(3N~ e N): 

Iff dt lim Ild~(t)[lA = dA(y,, Yk) < e, for n, k > N, 
Y ' - ~  c ~  n 

We seek a family of curves {c*: [0, 1) ~ O § MIve N}, such that II o e o c* = 
c~ and DIIoe o 6" = ~, for all v. The forms of How and DIIoe were given 
in 2.3. So we readily find from 

c~(t) = (x(t), bl(t)) 

~v(t) = (x(t), ~l(t), a'(t)~i(t), fll'(t)~i(t)) 

a suitable candidate c* with 

d*( t )  = (x( t ) ,  (b,)t, ~'(t)b,(t), (flj'b,),) 
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by choosing fij~(t) = fil~(t) i f j  = 1 and fij~(t) = 0 i f j  ~ 1. With this choice 
we have for all v e N and all t e [0, 1) 

[[d~*(t)p = I]dv(t)llA ~ 

It follows that the curves c* and cv have the same length for all v e N. 
In consequence, there exists the limit 

l im Ile,*(t)l[ dt = dA(Ys, y~) 
n 

This allows the construction of the required Cauchy sequence (us) in O+M 
by defining 

un = lim c*(tn) 
V.--~ oo 

which exists by virtue of the completeness (11.2.3) of each fibre rib-+ (H tz(Y~)). 
The Cauchy property follows for (us) from that for (Ys) because for all 
n, k e N  

d(u,, uk) = dA(y,, Yk) I 

Corollary 1. For all u e O + M  and all b e  U+M there exists 
v e Ilov'- (b) such that 

d(u, v) = dA(no~,(u), b) 

Proof  This is simply an extension of our construction in the foregoing 
result to the boundary. It obtains by the compactness of  the orthogonal 
group and the transitivity of the action of 0 + on the fibres of  0 + M (see 1.1, 
11.2.5). [ ]  

Corollary 2. For  all b e  U+M and all u, v e I I o v * - ( b ) w e  have 
IIv(u) = I Io (v )e~- I  = O+M/O +. 

Proof  We lift a Cauchy sequence defining b to Cauchy sequences (u,) 
and (vn) defining u and v. Again, transitivity of 0 + yields a sequence (hs) 
in 0 + mapping one into the other: 

Rh.(us) = v., for all n e N 

By compactness there will exist some limit point h e 0 + ;  then -Rh links u 
and v in the same fibre of  0 + M. [ ]  

2.5. The Sachs Homeomorphism J~  = O+M/O + ~- U+M/~. What we 
have been preparing for is the partition of U + M by some suitable equivalence 
relation ,,~ so that the space of classes U+M/~, is topologically equivalent 
to M. Plainly, we must have 

y ~ z .~  IIv(y)  = II~(z) 
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where, using Corollary 2, we define the projection 17 v as 

rltr: U+ M.-+ M :  b~--> IIo(II~t, '-(b)) 

Necessary as this is, it is rather untidy mathematics actually to define 
by this requirement. For  it involves the simultaneous use of  the Sachs 

metric and the Schmidt metric on their respective spaces. In fact Sachs [52] 
was able to formulate ~ ,  and therefore Iltr, wholly in terms of  his space 
( U + M ,  ~). 

Definition (Sachs [52]). For  all y, z e U + M  we write y ~ z if and only 
if there exist Cauchy sequences (y~) and (z~) in U + M  such that 

(i) lira._. ~o y .  = y and l i ra . .  ~ z~ = z; 
(ii) 17 r:(Y~) = 17 v(z~) for all n z N ; 

(iii) there exists a uniform lower bound A E ( -  oo, - 1) such that for all 
n e • (see 2.1) 

g(t(y.), t(z.)) >. A 

Proposition. For  all y, z e U + M ,  

y ~ z -~ He(y)  = Hg(z) 

Also, ~ is an equivalence relation and so the space U+M/,~  is 
homeomorphic  to ~ .  

Proof  (see Sachs [52]). (a) Suppose that l-Iv(y) = IIv(z). Then there 
exist Cauchy sequences (u.), (v.) in O +M such that 

lim u~ = u ~ IIotr '-(y) 
n-.,~ oo 

lim v.  = v e Hov'-(z)  

lira R~(u.) = v, for some h z 0 + 
n . .~  0o 

Now construct a sequence (y.)  by alternating terms from IlotT(u.) and 
I lov  o Rh- l ( v . )  and, similarly, a sequence (z.) by alternating terms from 
17o~ ~ Rh(u.) and IIov(V.). These are convergent to y and z respectively. 
Moreover, since h is fixed for all n ~ [~ the required uniform bound obtains. 
Therefore y ~ z. 

(b) Suppose that y ~ z. Then there exist sequences (y.)  and (z.) in 
U + M  with a common projection and convergent to y and z respectively. 
By Corollary 1 in 2.4 we can lift (y.)  and (z.) to Cauchy sequences (u.) and 
(v.) in O+M. We obtain a sequence (h.) z 0 + by defining 

R~.(uh) = v., for all n ~ [~ 
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By hypothesis, there is a uniform lower bound on the expression g(~(y.), ~(z.) 
so (h.) has a cluster point h E 0 +. Then 

lim R~(u.) = lim v. 
n - - ~  r  n - - .  oo 

and so Hv(y) = He(z). 
(c) It remains to observe that property (iii) of ~ is transitive, though 

it is not obviously so. We recall that a relation is an equivalence relation if 
and only if it partitions the set into disjoint nonempty subsets. That is pre- 
cisely what He does, and the fibres it determines are just the classes of z .  
So, as required, U+M/~ is homeomorphic to /~ .  [ ]  

2.6. Completion of Bundles Associated with LM. We are particularly 
interested for space-time in the associated bundles (LM x F)/G, where F 
is N" or a tensor product constructed therefrom (see 1.4.3 and Examples 
2, 3). These are the tensor bundles TnkM. Among the sections of them we 
find the Riemann tensor, the energy-momentum tensor, and the Lorentz 
metric. All have considerable physical significance and so it is important 
to investigate their behavior as the boundary ~M is approached. This is 
made possible by Hfiji~ek and Schmidt [32] who effected the completion of 
all bundles associated with LM. We adapt the construction given by these 
authors to suit our previous results and notation. 

Let L 'M be a connected component of L M  and suppose that 
(L 'M x F)/G + is any associated bundle (see 1.4.3). Then the right action 
of G + on L 'M x F i s  given by 

(L 'M x F) x G + ~ (L'M x F): (u, a, h) ~ (Rn(u), Lh-l(u)) 

and we have the smooth, open projection 

rIv: (L'M x F)/G + -+ M: Rc+(u, a)v-> IIv(u ) 

From the completion of L ' M  (see II.1.4) we have the continuous, open 
projection 

Hr.,: [,'M--+ M: u~--> Ra+(u) 

We fit these together to obtain the following spaces and continuous, open 
projections: 

YIi:L'M x F-+ L'M: (u, a)~--> u 

lip: L 'M x F--> (L 'M x F)/G+: (u, a)v+ Ka+(u, a) 

l]z,: ( / f M  x F)/G + -+M: Ra+(u, a) -+ IIz,(u) 
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They form the following commutative diagram: 

L 'M x F rh ~- L 'M 

n.~ Int.  

( L ' M  x F)/G + fi~,~- M 

For any open neighborhood A ~ M of x e M the associated bundle 
property 1.4.3(ii) assures us that l~lr.~(A) = f i j - ( A )  is diffeomorphic to 
A x F. In particular, for a vector space F, there would exist a linear iso- 
morphism with each fibre I]z,*-(y ) for y e A. However, this need not be the 
case for a point z e OM = M \ M  the b-boundary of M. What matters is 
whether or not G § acts freely on the fibre l~lr,'-(z) (see 1.3.8). Equivalently, 
we need to know whether the subgroup 

6 .  + = {h ~ 6 + I-~(u)  = u} 

is trivial, for any u e 1]z,*-(z). We denote by FIG, + the quotients pace with 
the topology that makes continuous and open the canonical projection 

F--+ FIG,+: a~-> [a] = Lo~+(a) 

Now everything falls into place by means of the following results of Hfiji&k 
and Schmidt [32]. 

Proposition. Let z e _M, u e IIz,'-(z). Then there is a homeomorphism 
fiz,*-(z) ~- FIG,  +. Moreover, if G`` + is trivial and F is a vector space, 
then there is a linear isomorphism I]z,*-(u ) ~ F. 

Proo f  (i) By construction we have a continuous, open map 

f~: FIG,  + ~ lqz,'-(z): [a]F+ lip(u, a) 

We show that it is bijective and therefore a homeomorphism. 
Suppose (u, b) e I-Iz,-(z). Then there exists some h e G + such that 

/~h(u, b) = (u, a). This means that 

(/~h(u), Lh-l(b)) = (u, a) 

So h e G~ +, Lh-~(b) = a and hence b e [a], which implies that [b] = [a] e 
F/G,, + . 

Now supposef~[a] = fdb]  for some a, b e F. Then 

/~o § (u, a) = Ro + (u, b) 

so for some h E G, +, Lh-l(a) = b and [a] = [b]. 
(ii) Let F be a vector space and let G~ + be trivial. Then, from (i), 

f iz?(z)  _ F/G`` + and by hypothesis E/G~ + ~_ F, since G`` + is trivial. We 
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have only to usef~ to induce a well-defined vector space structure on l~,(z). 
The standard procedure is to define for all X, Y e  flz,*-(z ) and A e ~: 

X + Y = f ~ ( f z l ( X )  + f z l ( y ) )  

;~x = A ( a f  Z~(x))  

This necessarily makes f~ linear, and since it is bijective it is an isomorphism. 
It remains to show that the whole construction is independent of the par- 
ticular choice o f  u. Suppose then that we also have v r IIz,'-(z). It  follows 
that since G= + is trivial so also is Gv +. For  suppose /~k(v) = v. Then by 
transitivity there exists m e G + with Rm(u) = v and so we find 

~k(v)  = Rk o R~(u)  = _ ~ ( u )  

But since G~ + consists only of  the identity e, we have 

Therefore, G~ + is trivial and F/Gv + = F/G,, + = F since the classes are 
singletons. Hence: 

f~: F---~ l~Iz.*-(z): a ~---~/~a+(u, a) 

f~: F - +  I]z,*-(z): b~--~ Ro+(v, b) 

Let X = /~a+(u, a) and Y = Ra§ b). We find X + Y via f~ and via f~ 
as follows, with -Rm(u) = v as before, 

f~( fg~(X)  + f ; ~ ( Y ) )  =f~(a  + Lmb) = Ka+(u, a + Lmb) 

L ( f y l ( X )  + f ; a ( y ) )  =f~(Lm-la  + b) = Ro+(v, Lm-~a + b) 

But these are the same because 

Ra+(u, a + L,~b) = Ka+(Km(u, a + Lmb)) = Ra+(Rm(u), L~-~(a + Lmb)) 

A similar argument holds good for multiplication by scalars, so the vector 
space structure is well defined for IIL.'(z) and it is isomorphic to F. [ ]  

Remarks. (1) We can take the particular case F = ~4 and obtain the 
completion space TM in which the tangent bundle T M  is dense. Then the 
Lorentz metric for space-time (M, g) admits by I. 1.5) a continuous extension 
~,: TM x TM -+ R, which agrees with g on T M  x TM. Of course, if z e ~M 
is such that II~-(z) is degenerate (not a vector space isomorphic to R4), 
then we do not expect all the algebraic properties of g to extend to ~ at z. 

On the other hand, if z ~ ~M is such that II~-(z) ~ ~4, then there is 
a well-defined "tangent space" T~_M at z. In this case the symmetry, bi- 
linearity, nondegeneracy, and signature that characterize g ought to persist 



460 Dodson 

in its extension to ~ .  Indeed we can always find some x in M and a 
b-incomplete curve (see II.3.9) 

c: [0, I) ~ M, with endpoint z e OM 

Parallel transport along c will generate for all t e [0, 1) an isomorphism 
(see 1.5.4) 

~t: n ~ - ( x )  - +  II~- o c(t) 

which is an isometry. By continuity this extends to t = 1 as the isometry 

zl: II~'(x) --> H~(z): u ~-> lira ~tu 
t ' - * l  

So we have for all v, w e T ~ r  

~(v, w) = gx(~;lv, ~;-lw) 

which preserves the Lorentz structure of gc(o in its extension to 
~ = limt_.l gc(o. A more sophisticated detailed proof is given in H~iji~ek 
and Schmidt [32]. 

(2) Duncan and Shepley [19] have pointed out that 

F = Fr = fix ')~ R'l(x*) 2 = 1 + (x=) = + (xa) 9' + (x4) 2} 

generates the unit future timelike bundle U+M used by Sachs [52] (el. 2.1). 
Let 0 + denote the subgroup of 0 + that preserves time orientation; then 
we have 

U+M = (L'M • r r ) / 0  + 

which by the foregoing procedure is dense in the topological space 
(L'M x Fr)/O + = O+M. 

Note that Duncan and Shepley [19], pp. 488, 490, misquote the equiva- 
lence relation of Sachs by omitting condition (iii) in 2.5. However, they 
observe that the relation ~ on U+M could be replaced by ~ on U+M, 
where (see definition of m in 2.5) y ~ z if and only if there exist Cauchy 
sequences (Yn), (z,) in the metric space (U+M, dA) such that there exists 

lim y ,  = lim z, 

in the topological space ~7+M. Our description here emphasizes the involve- 
ment of two topologies in the application of .~. Duncan and Shepley prefer 
it because #.. avoids directly using information about sequences on M, but 
they did not comment on its mixed heritage. Certainly the factorization 
U+M/~ more readily admits a homeomorphism with _~r than was the case 
for U+M/,.~ in 2.5. 

(3) In another article, Duncan and Shepley [18] suggest that for any 
point z e 8M, a coarse method of classifying the singularity there is via the 
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difference between the dimension of M and the "dimension of  II~-(z)." 
Their argument appears to suppose that rig(z) will always be a vector space. 
Furthermore, elsewhere in the article, they assign a global dimension to 
aM and assume that it coincides with the dimension of  Ill-(z) for all z. 
What can be salvaged from their argument is that if M is extensible to a 
differentiable manifold containing ~r then we must have H~-(z) isomorphic 
to R ~ for all z s aM, unless we are prepared to use a more general definition 
for dimension (as, for example, in Hurewicz and Wallman [36], p. 4). 

2.7. Boundary Points Generated by Horizontal Cauchy Sequences. Every 
2 in the b-boundary aM is the projection by IIo+ of an equivalence class of  
Cauchy sequences on O+M. I f  the Cauchy sequence (v~) determines 2 ~ aM, 
then this 2 is equivalently determined by a Cauchy sequence (u~) on a 
horizontal curve in O +M. 

Proof. This result was obtained by Schmidt [55] through a fibre 
isometry with L'R ~ which is a complete Riemannian manifold. We give a 
direct proof  of  similar length. 

There is a curve k: [0, I ) - + O + M  such that, for some sequence 
(t,) c [0, 1) convergent to 1, v~ = k(t~). Now k(t) does not eventually lie 
wholly in one fibre II~-+(z), for then by 2.3 (v,) would have a limit there 
instead of in the boundary O+M\O+M. Hence IIo+ o k = c: [0, 1) -+ M is 
inextensible in M. We take the unique horizontal lift (see 1.5.4) 

ct: [0, 1) -~ O+M: t~-> (c(t), ~(bl)), with ct(0) = vl = (xl, bl) 

Now we have a sequence (d(t~)) in O+M with projection ( x , ) =  
(IIo+(v,)) in M. The action of  0 + is by 2.1 transitive on fibres, so for all 
n e [~ we can find 

From property 1.5.1(ii) of  a connection we know also that elements of  0 + 
will map a horizontal curve into another horizontal curve. 0 + has the 
standard topology induced by R ~6, it is closed in GI(4; ~), by Schmidt 
[54]; cf. Friedrich [25], p. 690. 

Suppose that v~ is the limit of (v~); it is known to be in O+M/O+M. 
By completeness of O §  the curve ct has an endpoint u| s O+M\O+M 
with 

IIo+(uo~) = IIo+(v| = 2 ~ aM 

Hence there exists some g~ ~ 0 + with R ~| = v~. By continuity the 
sequence (g~) defined above converges to g| Let c* be the unique horizontal 
lift of  c through R~(v~), that is, c*(0) = Rg~o(Vl). Recall t h a t / ~  coincides 
with Rg ~ on 0 + M. 
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We define the sequence (c*(t~)) = (u~) on the horizontal  curve c*. Now,  
parallel t ransport  commutes  with the act ion o f  0 § (see 1.5.4) and so c* = 
Ro= oct. Therefore for  all n ~ •, u~ = Rg| We find that  (u~) is 
Cauchy with the same limit v~ ~ O+MIO+M as (v,), because 

d(u~, u~) <~ d(u., v~) + d(v~, v~) + dO~, u~) 
<. d(Rg= o ct(t~), Rg,, o ct(t~)) + d(v~, vk) 

+ d(gg~ o ct(tk), Rg| o ct(t~)) 

N o w  (v~) is Cauchy, and (gO c 0 § is a sequence o f  continuous maps  with 
limit g~o E 0 +. So for  all ~ > 0 we can find N,  ~ ~ such that  

d(u,,ug) < ,  f o r n ,  k > N ,  �9 

Example. Consider L §  I with constant  connect ion h ~ 0. We have 
L §  ~ = {(x, b) ~ S ~ x R+}, and a Cauchy sequence in L §  ~ is given, for  
example, by (u~): n~-->(a, ea"), for some fixed a ~  S 1. Plainly this has no 
limit in L+S 1. I t  is Cauchy because for  any n, k e N the points u~, u~ lie 
on the curve 

c: t ~  (a - t, e at ) 

with tangent vector field, by 1.1 

d: tF--~(-1 ,  he at) and II~(t)[I = e -at 

Therefore by 1.2.4 

[f]: [ 1 [ e - a ~ - e - a ~ [  d(u~, uk) <~ e -at dt = 

In  fact by  1.5.4 the curve c is a horizontal  curve: the horizontal  lift o f  
~ SZ: t~-->a - t th rough  1 ~ R* at t = 0. 

Note  that  in the uniformly equivalent metric space [17] 

{(u, v) ~ S x x (1/Ihl, oo)} = L + S  ~ 

our  horizontal  curve appears as (see Example 2 in II. 1.4) 

u(t) = constant  = h(a - t) + log e at = ha 

v(t) = (e -at + 1)/lal 

Also, our  Cauchy  sequence becomes 

n ~ ( h a ,  (e -a~ + 1)/lal) 

and we can easily see that  it has the limit 

(ha, 1/[hl) ~ S ~ • [1/Ihl, ~ )  = L + S  ~ 

with respect to the usual metric. 
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2.8. Holonomy Bundles  Generate  the Same b-Boundary. The holonomy 
bundle through any point in the frame bundle determines the same b-boundary 
as the frame bundle itself. 

Proof  Schmidt [55] pointed out the equivalence of this result with 
our 2.7. We have encountered the generalization due to Friedrich [25] in 
II.2.5. 

Let uo ~ O + M  be arbitrary, and denote the holonomy bundle through 
uo (see 1.5.8) by 

L'M(uo) = {v ~ L ' M I u  o ~ v} 

It inherits a metric from inclusion in the Riemannian manifold 
(O+M, ( , )). From 2.7, for all )7 e OM we can find a Cauchy sequence (u~) 
on a horizontal curve in O + M  with 

II~+ l im (u~) = 

So we can take the Cauchy Completion L'M(uo) and extend the action of 
q)(Uo) uniformly continuously as before and find 

Hz,(L'M(uo)) = L'M(uo)/@(Uo) ~ M = M u OM [] 

Remark. Ihrig [37] has found the holonomy groups of a large class of 
space-times. 

Example. L+S  1 with constant connection ~, again! (Cf. Example 2 of 
1.5.7.) Let uo = (Xo, bo) ~ L+S ~ be arbitrary; then we have 

O(Uo) = {e -Ak e N+Jk e Z} 

L+Sl(uo) = {(x(mod 1), bo exp { - h ( x  - Xo)})]x e N} 

From Example II. 1.3 we have the isometric equivalence 

L+S~(uo) "~ {((Axo + log bo) rood A, (exp {h(x - xo)}/boIh[) + 1/[hi)Ix e N} 

This allows us more easily to see the completion 

L+SZ(uo) ~= {((AXo + logbo)mod A, v)[v >. 1/[A[} 

The action of @(Uo) was given implicitly in II. 1.3; it easily extends to 

/~e-~((hXo + log bo) mod A, v) 

= ((hxo + logbo - hk)mod A, (v - 1/Ih[)e ~k + 1/]h[) 

-- ((AXo + log bo)mod A, (v - 1/]hl)e ~ + l/[a[) 

Hence we find the quotient (see 1.3.9) from 

[((hxo + log bo) mod A, v)] 

= {((hXo + log bo) mod h, (v - 1/[hl)e ~ + 1/lh[)[k e z }  

s ~ {[((hXo + log bo) mod A, v)][v/> l/[A[} 
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As required this agrees with (see Example 2 of II. 1.4) 

E+S1/R+ N S 1 W {~} 

for the point f2 corresponds to the singleton class 

[((~Xo + log b0) mod ;~, 1/l~l) ] 

and as v runs through the set 0/[21, oo) so the corresponding point (x, b) e 
L + S  1 runs through values given by (cf. Example 1.3) 

Lx + log b = 2Xo + log bo 

b = l/(vl;q- 1) 

Hence x runs through {;~x0 + log b0 + log (v[,~[ - 1)[v > 1/[,~[}, which 
means that modulo 1 it certainly completes a circuit of  S 1. 

2.9. Approaching the b-Boundary. We are now in a fairly strong posi- 
tion to investigate the geometry of  space-time (M, g) near the b-boundary 
0M. We have topologies for all the following homeomorphs of_M = M u OM: 

L'M/G + (cf. I1.1.4) 
E'M(u)/~(u) (cf. II.2.6) 
O+M/O + (el. 11.2.5) 
U+MI~ (cf. III.2.5) 
U+M/~ (cf. III.2.6) 

Thus we are well equipped indeed to say what we mean by "near the b- 
boundary." 

In the previous section we obtained from L ' M  the completion of the 
tensor bundles and discovered the topology of  the limiting, tangent tensor 
spaces at the b-boundary. For  nondegenerate such spaces we could re- 
construct the appropriate algebraic properties. Hence, we can investigate 
the vicinity of  the b-boundary by studying there the limits of  geometrically 
significant tensor fields. We shall return to this theme again later (4.2), but 
here we give some preliminaries. 

Proposition. Let c: [0, 1)---~M be a b-incomplete curve with 
endpoint z ~ 0M. 

Let c*: [0, 1) ~ L ' M  be any continuous curve with rlL, o c* = c 
and endpoint u e II~(z). 

Let a: [0, 1)---~F be a curve (in the manifold F on which G + 
acts on the left) such that for some a' e F all neighborhoods N of 
Log(d )  have a real 3 > 0 for which a(t) e N for t > (1 - 3). 
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Then the field 

X: [0, 1) --> (L 'M x F)/G + : t ~+ II~(c*(t), a(t)) 

has a well-defined limit 

lim X(t )  = II~(u, a') ~ (L 'M x F)/G + 

Proof (See H~ji~ek and Schmidt [32], though beware the false economy 
in notation !) From 2.6 we recall that 

+ = {h = u}  

Let Vbe any set containing {X(t)[O < t < 1} which is open in (L'M x F)/G +. 
By the continuity of 

IIp: s  x F-+  ( s  x F)/G + 

we have that IIk-(V ) is a neighborhood of 

{u} x La~*(a') - - / , ' M  x F 

By hypothesis there exist real 3 > 0 such that 

(c*(t), a(t)) ~ IIF(V), for t > 1 - 8 

Therefore the projection of this curve, 

{X(t)]t > 1 - 8} 

lies in V and so has a limit in V c. Again, by continuity of IIp this limit 
coincides, as required, with II~(u, a'). �9 

Remarks. (1) H~jieek and Schmidt pointed out that in particular this 
result implies the following. Suppose that 

X: [0, 1)-+ (L 'M x F)/G § 

is a tensor field, along a curve c: [0, 1) -+ M, which terminates at z ~ 8M, 
and that the tangent space at z ~ M is nondegenerate. Then a limiting value 
for X at z exists if its components (X f) in a parallel propagated frame along 
c, given by 

e*: [0, 1 ) -+L 'M:  t~--~ rt(bi) 

have well-defined limits as t -+  1. Conversely, such tensor fields can be con- 
structed from boundary values by taking the (X ~) constant along the chosen 
curve. 

Hfiji6ek and Schmidt also formulated the notion of accessibility for a 
boundary point z ~ ~M. 

Let c: (0, 1)--~M be a smooth curve with endpoint z EaM. So 
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5: (0, 1] ---~3~ is continuous with 5(1) = z. We say that 5 has a tangent 
vector X ~ T ~ r  if there is a continuous map 

~ : ( 0 , 1 ] ~ T M ,  with ~(t) = d ( t )  f o r t  < 1 

such that X = ~(1). The accessibility of z ~ 9M is the set of elements 

A~ = {X~ T~13e with tangent vector X} 

with 6 as in the previous construction. Hfijitek and Schmidt illustrated the 
notion for a flat two-dimensional space-time M c R2 where the topological 
boundary ~r (see 1.1.12) of M in R z is a piecewise continuously differentiable 
curve c. Then the b-boundary ~M coincides with c, and the boundary of 
L'M in L'M is H~(c) with TM\TM = H~(c). 

(2) Duncan and Shepley [19] showed how some information could be 
gained about a b-boundary by studying the algebraic structure of the bundle 
metric. Thus, if the latter has a zero eigenvalue somewhere, then the integral 
curves of the corresponding eigenvectors yield the b-boundary through 
identification by the appropriate structure group. Of course a zero eigenvalue 
corresponds to a vanishing determinant for the metric tensor in local co- 
ordinates. Geometrically that corresponds to a collapse of distances in one 
or more directions and hence an identification of some superficially distinct 
Cauchy sequences in the bundle. 

(3) Clarke [10] has shown that in the situations envisaged by the singu- 
larity theorems of Hawking and Penrose, the Riemann tensor cannot be 
well behaved at points of the b-boundary. The proof requires that (M, g) 
be a globally hyperbolic space-time, so M ~ R • S for some three-manifold 
S (see [35], p. 212), but g need only be of class C x- (see 1.2 and 4.2). For the 
pseudo-Riemannian cylinder N studied in 1.5.9,10 we see that singularity 
of the metric arises as ff--~ 0, and there one component of the Riemann 
tensor is 

R~12(ff)--->~ -2, as ~---~0 

3. FRIEDMANN SPACE-TIMES 

Observations of our own universe indicate a high degree of spherical 
symmetry about our own position, both in the disposition of luminous 
matter and in the background blackbody radiation. Since we have no reason 
to suppose that our position is in any way special, it is natural to consider 
cosmological models that display spherical symmetry about every point and 
are therefore spatially homogeneous. There exist exact solutions of Einstein's 
equation (see 1.3) for such conditions, and they are called Friedmann or 
Robertson-Walker space-times (see [35], pp. 134--142). We shall consider 
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such a space-time (M, g) with metric g given in coordinates by the arc length 
formula 

ds~ = R2(~b)(-d(J 2 + de 2 + sin 2 o(dO 2 + sin 2 0 dq~)) 

Here ~b is the time coordinate and ~, 0, 9~ are polar angles on S a c R ~. The 
smooth, positive function R is defined for ~b in some interval (0, T) c R. 
The physical requirements of  positive matter density, nonnegative pressure, 
and the observed recession of  galaxies leads to the behavior R(~b)--+ 0 as 
~b-+ 0. Without loss of  generality we can suppose that R(~b) behaves like 
~b D for some O > 0, as ~b--->0; in the particular case of  Example 2, 1.5.9, 
p = 2. It follows that the model indicates a physical singularity "at  ~b = 0" 
because the matter density increases without bound as ~b --~ 0. This singularity 
can be incorporated into the b-boundary 

OM = O+ M / O + \ M  

Bosshard [7] showed that (i) fibres of  O + M  over ~b = 0 are degenerate; 
(ii) if also R(~b) -+ 0 as ~b -+ T for some T e ~, then there is a similar singu- 
larity "at  ~b = T "  and the two singularities are identified in ~M if R(~b) ~ 
R ( T  - ~b) as ~b --+ 0. Independently of  Bosshard [7], Johnson [38] used similar 
techniques to extend (i) to a wider class of  space-times (including that of  
Schwarzschild) and to prove that in all such cases the bundle completion 
M = M u ~M is non-Hausdorff. 

We give some details of the calculations that lead to these results. 
After considering the implications we introduce in 3.8 a new bundle metric 
for parallelizable manifolds (see 1.2.7 and the opening remarks of this part). 
This shows promise of some advantages for the completion of space-times; 
Clarke has derived a two-stage completion procedure as an alternative, not 
requiring a parallelization (see 4.4) and showing even more promise. 

3.1. The Injection h: O+N--> O+M. In the metric just given we can of  
course ignore the coordinate singularities when sin ~ or sin 0 is zero because 
these are irrelevant to the geometry and physics. On the other hand, the 
behavior R(~b)-+ ~bp as ~b--> 0 is not coordinate dependent and it heralds a 
true geometric singularity. Bosshard [7] pointed out that it is sufficient to 
consider the two-manifold (N, y) where 

N = {(~, ~)[~ s (0, T) ,  ~ ~ S 1} 

and the pseudo-Riemannian metric y has line element 

ds~ 2 = R 2 ( r 1 6 2  2 + d~ 2) 
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We shall devote some space to establish this sufficiency. The investigation 
of a space-time through submanifolds that display singularities can save 
considerable effort because the dimension of the frame bundle increases 
even faster than the square of the dimension of the underlying manifold. 

There is an S2-family of natural smooth injections of N into M: 

i1: N---~ M: (~, o) v--~ (if, r 0o, ~00) 

for any fixed 0o, ~00 ~ S 2. 
The positively oriented component O+N of the orthonormal frame 

bundle of N (see 1.5.10) is 

( (  [coshx s inhx]  l [ 8 , ] ) l ( f f ,  cr)~N, XER ) 
O+N = q~, a, [sinh X eosh xJ ~ O~ 

where we have arranged to locate the orthonormal frame 

r 0a 

at X = 0 for all (d2, ~) e N. This is precisely what we did for the example in 
1.5.10, where we studied the particular case when 

R: (0, 27r)--~ N: ~--~ 1 - cos~ 

Next we find, for fixed 00 and ~o, a smooth injection of O+N and O+M. 
Consider the submanifold O § Mo ~ O + M defined by 

1 o+ o -_ 0o, I ?  o) 
where 

eosh x sinh X], 
LO0= Isinhx coshxJ I =  [10 01] 

[~*] and b2= [ (sincr)-~ O~ 1 
bl = 8~ L(sin 0 sin a)- 1 ~v, 

The manifolds O +3/o and O § N are clearly isomorphic and we thereby have 
a smooth injection h: O+N---> O+M since (bl, b2)/R is an orthonormal frame 
at all points of  M and O+Mo is a subbundle of O+M because 

is a Lie subgroup of the Lorentz structure group for O + M. Using the natural 
projections, we have the following commutative diagram: 
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O+Mo 

O+N ~ O + M  

i l  
N ~ M 

3.2. W e  give a p r o o f  o f  the  fo l lowing l emma stated by  Bosshard  [7]. 

Lemma. I f  c is a ho r i zon ta l  curve in O+N, then h o c is also a 
hor izon ta l  curve in O +M. 

Proof. In  each case we use the  Lev i -Civ i t~  connec t ion  induced  in the 
f rame bundle  by  the metr ic  tensor  (cf. 1.5.9). F o r  O + M  we find the con-  
nect ion componen t s  as fo l lows:  

ra~ = - sin ~ cos or, Pa~ = ~ sin 2 or, F4~ = ~ sin 2 e sin 2 0 

P4~ = - sin cr cos ~ sin 2 0, r2a a = P2~ = cot  a 

F4~ = - sin 0 cos 0, I~a~ = c o t  0 

By symmet ry  we have F~ = F~ for  all i, j ,  k ;  o therwise  the remain ing  com-  
ponents  are zero. 

Evident ly  the componen t s  o f  the  connec t ion  on O + N  are  given by  
these F~. wi th  indices res t r ic ted to 1, 2. F r o m  1.5.2 a curve 

c: t ~ (c~(t), bit(t)) 

is hor izon ta l  in a f rame bundle  i f  and  only i f  its t angent  vector  O(t) = 
(d~(t), b/( t ) )  satisfies 

�9 l, ~tI,~ for  all t b j  t ~ - e , j  t. tel, 

Suppose  tha t  this curve is hor izon ta l  in O+N. Then  we ob ta in  a curve in 
O + M given by 

hoc:t~-->((c~(t),c2(t) ,Oo, q~o),Ba~(t)), ~ , / 3 =  1 , 2 , 3 , 4  

where Bj ~ = by ~ for  i , j  = 1, 2 and  Ba 3 = B4 4 = 1/R, with o ther  componen t s  
zero. W e  observe t h a t / ~ /  = bj ~ for  i, j = 1, 2 and  also d a = d ~ = 0. Therefore  
for  i, j = 1, 2 we have, as required,  
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I t  remains  only to check for  Ba a = B~ 4. 

�9 �9 d R  d l  dc 1 
B3 a = B 4  ~ = - R d l / R ,  where R = ~ ,  = d--/- 

- B3kc'F~' ~ 3~'F3 - R  61 
R 

1 .i 
- ~,~,r~, = - B~,~,r~, = -~ c 

Hence  for  all a,/3, 3, ~ we have 

BB = = - -  B~6 dsr~ 

and so h o c is hor izontal  in O§ when c is hor izontal  in O+N. �9 

3.3. We are now in a posi t ion to show tha t  the derivative of  our  injection, 
Dh: TO+N---> . TO+M, preserves the Schmidt  metric. 

Lemma. F o r  all Y ~ TO +N 

II YIIN = [IDh(Y)ll~ 

where the no rms  are derived f rom the Schmidt  metrics for  O§ 
and O+M, respectively. 

Proof. We give a different p r o o f  f rom Bosshard  who  used s tandard  
hor izontal  and  vertical fields (see 1.4.2 and 1.5.5). I t  is o f  course sufficient to 
work  with the norms  because of  the symmet ry  and  bil ineari ty of  any  metr ic  
tensor  field, which yields the polar iza t ion identi ty (see [16], p. 104). 

Let  x ~ N a n d  (x, bj ~) ~ O + N w i t h  an arb i t ra ry  vector  Y = (x, bj*, X ~, Bj*) 
TxO+N. The  m a p  Dh takes the fo rm 

Oh: (x, bj ~, X ~, Bj ~) ~ (x, Yo, be =, X ~, B~ ~) 

where c~,/3 = 1, 2, 3, 4 and  

X a = X ~ = 0; ba a = (R sin ~)-1,  b44 = (R sin 0 sin cr)-1 

Ba 3 = B 4 8  = Ba ~ = B44 = b43 = ba ~ = 0  

F r o m  II.1.1 for  connect ion fo rm oJ and canonical  one- form (9 the 
Schmidt  n o r m  is given by 

II rllN ~ =  11(9( Y) llo~ + IIo~(Y)llo ~ 

= II Ebb'I- l[x'] IIo ~ + II In, '  + b,W'~,X'][b/]-111o = 

by 1.4.5 and 1.5.6, Example  2. A similar expression holds for  IIDh(Y)IIM ~, 
with all indices running through 1, 2, 3, 4. 



Space-Time Edge Geometry 471 

Suppose that Y is horizontal; then ~o(Y) = 0 and by 3.2 we know that 
Dh(Y) is horizontal in O + M. Hence II r [[~ = II Oh(Y) ll~ because IX ~] = 
[X 1, X 2, 0, 0]. 

On the other hand, if Y is vertical then | = 0 so [X *] = 0. Hence 
Oh(Y) is vertical in O+M and II YII~ = = [[Oh(Y)[[M 2 because 

follows because horizontal and vertical vectors are Thus our result 
orthogonal. [ ]  

Corollary. For all p, q ~ O § N 

d~(h(p), h(q)) <~ d~(p, q) 

where dM and d• are the topological metrics induced on O§ and 
O§ respectively, by the Schmidt norm (see 1.2.4). [ ]  

We find an expression for the Riemannian metric on O§ as follows. 
Consider any curve 

c: [a, b] --+ O+ N: t~+ (cl(t), c2(t), X,J(t)) 

with tangent vector field 

~: [a, b] ~ TO+N: t ~ (~l(t), ~2(t), 2,J(t)) 

Here the orthonormal frame determined by xJ(t) at e(t) is (xlJ0j, XjOj) 
and from 3.1 there is X: [a, b] --~ R such that 

1 [cosh x sinh X] 
[X/] = R o c "-'----~ [sinh X cosh X 

For the Schmidt norm (see II. 1.1) we have 

[[~IIN 2 = I lO(01 lo  2 + [[o~(~)[Io 2 

[dl cosh X-d2 sinh X] 
~(~) = [xj]-~[d '] = R d2 cosh X - d  1 sinh X 

[X/][X/]-I = ---R'RCl [~ ~] +:~1[0 ~], where :~ = "d-f'd~c~= -~dR 

[x?r,~,eq[x;] - I  = -~ e~ e~ 

0 2 + - c  

2+~ 

( )(R)" �89 = = R= ((e~)= + (e=)=)cosh 2x - 2d~e 2 sinh 2X) + 2 + ~ c= 
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We can discard the factor  2, so in ~b, a, X coordinates the expression for  the 
arc length formula  o f  the Schmidt metric on O §  is 

ds 2 = R2(d/) (d~b 2 + d~r 2) cosh 2 x - 2 d~ d~ sinh 2X + \R(~)  + dX 

3.4. The Initial Singularity at ~b = 0. We construct  a nonconvergent  
Cauchy  sequence s in (O+N, tiN) to determine a point  o f  the complet ion 
O +N and hence obtain a point  o f  the b-boundary  aN. In  consequence o f  
3.3, h o s is a Cauchy sequence in O+M, which determines a point  o f  O + M  
and so gives a point  o f  aM. 

Let ~0 be fixed in S 1 and  consider the sequence 

sl: N --~ O+N: n~-+(~b., ao, O) 

for  some # .  �9 (0, T) with r  --+ 0. Then for  all n greater than some No �9 N 
we can find t .  �9 [0, 1) such that  r  = 1 - t .  and t .  ~ 1. So our  sequence 
eventually lies on the curve 

e: [0, 1) --->- O+N: t~--~ (1 - t, ao, 0) 

This curve is horizontal,  so we find f rom 3.3 

[l~(t)llN - R(1 - t) 

By hypothesis, there is a p > 0 such that  

R(r ~ r for  r -+  0 

Therefore,  for  large enough k, n �9 N, 

d~,(s~(n),sl(k)) <. ] f,[~ lld(t)][,,dt l ~ l f[[ q,~ dr 
Since ~b. ~ 0 as n ~ oo, for  all r > 0 we can find N~ �9 I~ such that  

dN(sl(n), sl(k)) < ~ for n, k > N~ 

Thus  sl is a Cauchy  sequence, and the equivalence class to which it belongs 
determines a point  ~o as limit in O+N. This projects to a point  
Xo = IIo(~o) �9 aN, which we can identify as the singularity with coordinates 
~b = 0 and ~ = ~o. 

By a similar argument,  the Cauchy sequence 

s: ~ --+ O+N: n~+ (~b., ~o + 3,~, Xl) 

with ~b.--+0, 3.---~0 and fixed ~o, Xl also determines a point  :~1 �9 0 +N. 
Moreover ,  ~1 and ~o belong to the same fibre o f  O+N, that  is, I I o ( ~ )  = 
IIo(~Zo) = Xo �9 ~N. 
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3.5. The Degeneracy of Fibres in O + N over ~ = 0. To establish the 
degeneracy we construct  for  each n ~ N a curve k~ that  joins sl(n) = (~b~, %, O) 
and s(n) = (~b,, ~o + ~ ,  Xl), for  fixed ao and X1. Then  we show tha t  the 
length of  kn tends to zero as n -+  oo. 

Let  R~ = R(r = /~(r and 3~ = -x1R~/ f~ .  Then  the curve 

k . :  [0, 3.] -+  O+ N: t~+ (r ~o + t, - ( R . / R . ) t )  

is hor izontal  by 3.3. I t  joins  s(n) and s~(n) as required, and its length is 

x.= ..s (cosh (-2 ,..Jo 
We can obtain close bounds  on this via the inequalities 

0 < cosh X ~< (cosh2 X + sinh 2 X) vz = (cosh 2X) v2 ~ 2 ~12 cosh x 

Hence,  and because ~b. --> 0 as n ~ oo, 

K .  ~< I2~/Z(R.2/k.) sinh X~[ --+ I 2~/2 sinh X~b~+~ I 

which tends to zero as n ---> oo because by hypothesis  we have p > 0. 
Therefore  du(s(n),s~(n)) tends to zero as n---~ao so in the limit 

du(2o, ~71) = 0 and if0 = ff~. But % and X~ were arbi t rary,  so we m a y  con- 
clude that  any fibre over  the singularity at  ~b = 0 is degenerate. 

3.6. The subspace of 0 +N over ~ = 0 is a point and N is non-Hausdorff. 
Proof (Johnson [38], independent ly of  Bosshard ' s  work).  We define 

the essential boundary of  N as IIo(O+N) where 

O+ N = ( l i r a  c(t) ~ O+ N[e: [h, t2) -+ O+n is inextensible, finite, 
~t . -* t  2 

with c~(t) not  bounded  away f rom zero}  

We  also write co: (~b, do, 0) for  the " rad ia l "  curves with fixed ~o E S~; these 
are horizontal  lifts o f  their projections. Le t  

2o(~o) = lira co(~) 
~ 0  

P0 = {JZo(~o)l~ ~ s ~} 

We outline the p r o o f  given in detail by Johnson  [38]. 

Lemma 1. Po is compact ,  because the m a p  S ~ --->Po: o0~--> fro(%) 
is continuous.  

Lemma 2~ Each fibre I I g  o IIo(2o(eo)) reduces to a point.  (This is 
our  result 3.5 f rom Bosshard [7].) 
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L e m m a  3. For  all ~ > 0 and all ~o ~ S 1 

dN(~o(0), ~o(~o)) < 
(This follows f rom our  p roo f  o f  3.5 by a suitable adjustment o f  the 
sequence o f  curves k~.) 

Hence we may  conclude that  Po consists o f  one point,  2o. 

L e m m a  4. 0 +N = {2o}, so the essential boundary  o f  N is a point. 
We can see this f rom our  previous study of  horizontal  curves. Let  

e: [0, s)  -+ o +  N:  s~+ (el(s) ,  e~(s), ~(s)) 

be any curve in 0 + N such that  there is a sequence s.  ---> g with ~b. - 8l(s~) -+  0;  
it matters no t  whether X. = 2(s . )  -+ oo. 

N o w  consider the horizontal  curves 

c~: (O, ~b~] -+ O+ N :  tw-> (t, (rn + t - ~b~, X~ - log  R /R~)  

defined for  all n ~ N and such that  c.(~b.) = Y(s.), so R .  = R(~b.), (r. = g2(s.). 
By 3.3 the length o f  c.  is 

~n e -  Xn ~tn 

Hence, as ~.--~ 0 and R(~.) ~ ~ o  for  some 0 > 0, 

C.  ~ 21/2e-X.~+l ~ 0 

But, for  any fixed n, 

lim c~(t) = 20 
t~0  

because C.  is bounded,  the radial distance f rom c . ( t )  to  2o(r + t - ~b.) 
tends to zero as t --> 0, and P0 = { 2o} is compact  

L e m m a  5. The only open set in iV that  contains IIo(~0) is ~V itself, 
so IIo()T0) cannot  be Hausdor f f  separated f rom any point  o f  N. 

This follows f rom the fact that  for  arbitrary (~o, %) E N the vertical 
sequence 

s: N ~ O + N :  n ~+  (~o, ~o, n) 

converges to 20. For ,  consider the curves 

f~: (0, ~bo] --~ O+ N :  t~-> (t, ~o + t - ~bo, n - log  R /Ro)  

with Ro = R(~bo). As in Lemma 4 these have length 

I e - n J o(~'~ dt Fn = 121'= R2( t )  

which tends to zero as n -+  oo. Therefore lira s(n)  = 20 and so II o o s(n)  = 

(~0, ~o) -~  no(2o) ~ ~V. �9 
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This completes the proof of the stated proposition, but in fact Johnson 
proved considerably more, namely, the following generalization. 

Generalization 1. The preceding result holds for any two-manifold 

with metric given by 

(O, rm) x S 1, for anyrr~ < oo 

ds 2 = -b2(r) dr 2 + a2(r) dc~ 2 

where a and b are positive smooth functions (0, rm)--~ R + satisfying the 
conditions: 

(i) b /> 0 on (0, r~); 
(ii) limr-.o+ b(r)/d(r) = 0 and d(b/d)/dr >1 0 on (0, rm); 
(iii) a(r)/d(r) >1 rC on (0, r~) for some constant C > O; 
(iv) for all roe  (0, rm) there are smooth positive functions tT, b: R -~ ~ + 

such that 

a[rro.~.~ = a, ~[Cro,~m~ = b 

and 6(r) = 1 = ~(r) except on a compact set; 
(v) for some sequence x.  --~ 0 on (0, rm) 

x-" F b ( r ) .  
,=1 b(r) d r < ~ ,  ~ L  a(r-'--)) a r = ~ 1 7 6  

These conditions are satisfied by the Friedmann two-manifold N that 
we have been studying. They are also satisfied by the corresponding two- 
manifold from Schwarzschild space-time, for which 

a(r) = r ,  b ( r ) = ( 2 / r -  1) -1/2 w i t h r ~ =  1 

In all cases, when conditions (1)-(v) are met, there is a singularity at "r  = 0," 
and the b-boundary is essentially a point whose only neighborhood is the 
whole completed manifold. 

Generalization 2. The bundle-completions of four-dimensional Fried- 
mann and Schwarzschild space-times are non-Hausdorff. 

This follows from the existence of an injective isometry (like h in 3.3) 
of the appropriate two-manifold into the full space-time in each case. 
Horizontal lifts of radial (r --~ 0) curves lying in the image of the injection 
again yield a single point, like P0 in Lemma 3. Every neighborhood of the 
projection of this point by IIa+ M into the full space-time contains the image 
of the injection, because, as in Lemma 5, arbitrary constant sequences in 
that image also converge to the boundary point. The isometric action of the 
orthogonal group allows us to rotate the image of our injected two-manifold. 
So, for all points y of the space-time there is a b-boundary point x such that 
y is in every neighborhood of x. 
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3.7. Closed Friedmann Space-Time. Plainly, if  for  some T ~  ~ we 
have also R(~b) ~ 0 as ~b ~ T, and R(T - x) ~ x" for  some ~ > 0 as x ~ 0, 
then there is another  singularity corresponding to ~b = T. I t  will be entirely 
similar to the initial singularity at ~b = 0. Cosmologically,  such a situation 
corresponds to an initial big bang followed by universal expansion, contrac- 
tion, then a final complete collapse. Such a model  is called a closed Fr iedmann 
space-t ime. 

3.7.1. Sequences sl, s2 for Initial and Final Singularities. For  definite- 
ness we can think o f  the particular model  (see 1.5.10) given by 

R:  (0, 2~r) ~ R: ~b F--> 1 - cos ~b 

In  this case T = 2zr, but  for our  purposes we need only the proper ty  that  for 

x---> 0 

R(x) ~ R(2rr - x) ~ x p, for some p > 0 

We have a Cauchy sequence 

sl : [~ -+  O +N: n ~ (~bn, Cro, 0) with ~b n -+  0 

and with limit ;70 ~ O+N. Likewise we can find a similar Cauchy  sequence 

s2: ~ --+ O+N: n ~+ (27r - ~bn, Oo + 27r -- 2~bn, 0) 

with limit ~2 ~ 0 § Then Xo = IIo(;7o) and x2 = IIo(;72) are b-boundary  
points corresponding to the initial and final singularities, respectively. Our  
plan now is to find a piecewise-smooth curve that  joins sl(n) to  s2(n) for  
each n ~ 1~ and has zero length in the limit n -+  oo. By that  means we obtain 
d:~(;7o, ;72) = 0, so ;70 = ;72 and then X o =  x2; hence the initial and final 
singularities are identified in the b-boundary.  (See the diagram in 3.7.4.) 

3.7.2. Curves ln, jn up the Fibres through s~, s2. Consider  the sequence 

rl: ~ --> O+N: nF--> (r Cro - (Rn/Rn)xn, X.) 

where Cn--> O, and xn = - 3  log Rn for  some 3 > 1 to be fixed later. A 
curve In, which joins s~(n) and rl(n) for each n, is given by 

In: [0, an] ---> O+ N: t~--> (~bn, ao + t, - ( R J R n ) t )  
SO 

Rn 3 R.n log Rn 
c~n -- An  Xn = Rn  

Hence for  ~n ~ 0 as n -+  ~ we have 

Xn --+ ~ and ~n ~ ~bn log ~bn --+ 0 

Thus, l imn-~  rl(n) lies in the same fibre o f  O+N as go = limn-.~ s~(n). 
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F r o m  3.5 we know that  l~ is horizontal  with length 

L .  ~< 21/2 R.~R. s inhx"[  = 2-1'21(R~-~ - R~+~ 

But, R .  ~ ~b. ~ so /~ .  ~ ~b~-1 for  n --~ ~ ,  so 

L .  ~ - 

which tends to zero for  any 3 such that  1 < 3 < (1 + p)/p. 
We can find a precisely similar curve j .  for  each n that  joins s2(n ) to 

r2(n) where 

r2: ~ ~ O+N: n ~--~ (2zr - ~., % - X. (R . / k . )  + 2= - 2~b., X.) 

Again  the length J .  o f  L tends to zero as n -+  0% so the fibres over ~b = 2.r 
are degenerate, as we observed before. 

3.7.3. A curve Joining Initial and Final Fibres. Next  we take a curve, 
for  each n, that  joins rl(n) to w(n) where 

Such a curve is the horizontal  lift o f  a null geodesic given by 

m . :  [ r  2 =  - 4 . 1  - +  O + N  

The length o f  m~ is 

f r2~-o,  dt m .  = ~*.2~-*" 21J2R(t) e-X"~ dt = 2112 R~- 1 ~*.| R2(t) 

We are assured by the properties o f  R that  there exists some A e R with 

f 2.g-x 
lim R2(t) dt = A 
X'-+O X 

Hence 
M~ < 21/2AR~ - 1 ~ 2X/2A~bO~- 1) 

which tends to zero as ~b. ~ 0 since p > 0 and 1 < 3 < (1 + p)/p. 
The final stage is to provide a curve for  each n that  joins rz(n) to  w(n). 

This is achieved by the vertical curve 

v.:  [0, log (R./R(2~r - ~b.))] --> O + N  

: t~--> (2~ - ~b., go - x . (R . /R . )  + 2zr - 2~b., Xn + t) 
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From the arc length formula for 7 in 3.3, v, has length 

v,  = ]log (R,/R(2rr - ~b,))l 

which tends to zero as ~b,---~0 because we have supposed that then 
R .  ~ R(Z~r - ~b.). 

3.7.4. ImpBeations. Our various curves and sequences are summarized 
in the following diagram. 

w(n) 
i 

rl(n) 
r2(n) 

X o  I-~ . . . . . .  
sl(n) 

r  

VII  i 
t 
i 

. . . . .  .tb I 
/ 

A 

..... *'l ~72 
s2(n) i 

i 
i 
i 
i 
I 
i 

q, = 2zr 

For  all n we have 

dN(sl(n), s2(n)) <, L ,  + J~ + Mn + Vn = Fn 

and so by Corollary 3.3 

dM(h o sl(n), h o s2(n)) <. r ,  

But Fn --+ 0 as n ~ oo. Also sl and s2 are Cauchy sequences on O+N. Hence 
h o sl and h o s~ are Cauchy sequences on O * M ,  belonging to the same 
equivalence class in the completion space O+M. Therefore points of  the 
initial and final singularities are identified in the bundle completion 
M =  M u ~ M .  

This result casts doubt on the physical significance of  the b-boundary, 
for the two singularities arise in strikingly different physical regimes: expan- 
sion and contraction. Since we have put no causal structure into the com- 
pletion process, we can hardly expect the geometry to take account of  the 
direction of  evolution, but we would hope for temporally, spatially, and 
physically remote occurrences to be kept apart. There is of  course a further 
problem of  like kind, arising from the work of  Johnson that we discussed in 
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3.6. The non-Hausdorff nature of the bundle completion leads to the impres- 
sion that events remote from a singularity are in every neighborhood of  it, 
that is topologically close to it. 

The crucial stage in Bosshard's identification of  initial and final singular 
points is the establishment of  degeneracy in the fibres over them. That  makes 
it possible to lift an apparently innocuous null geodesic arbitrarily high up 
O+N and so join the degenerate fibres with arbitrarily small bundle length. 
Consider at any point in N a choice of orthonormal frame represented by 
X = Xo. Physically [16] it corresponds to a choice of observer (or reference 
system) with velocity v0 along the ~b-axis (relative to the observer using the 
frame x = 0, representing (1/R)[Oo, 8a], at the point) where 

cosh Xo = (1 - Vo2) -112 

So vo -+ 0 as Xo -+ 0; and Vo --~ 1 as xo -+ oo, which means that this observer 
approaches the speed of  light relative to the former observer. The essential 
geometry is captured in the submanifold 

No = {(v, v) e N} Z (0, 2rr) 

It has a bundle of  null frames with structure group •+. Let L+No be the 
connected component of the identity, and at all v e (0, 2rr) let the frame 
corresponding to 1 e R + be 

= �89 + aa) 

The connection ~7 induced by the Levi-Civit~t connection 7 on N is given 
in components by P~l where 

Then a typical curve 
c.: (0, 2rr) --.'- No: t~-> t 

has a horizontal lift through any ~. e ~ + at t = rr, say, given by 

c.t: (0, 2rr)--> L+N0: t~-> (t, 2(t)) 

where the positive function ~ satisfies 

1 dA 

So, for t ~ (0, 2rr), a(t) = a.R(rO/R(t ). 
The Schmidt norm gives 

1 R(t) 
Her, llNo = 
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From the properties of R we are assured of a finite limit 

lim f2~-x R(t)/R(~r) dt = B 
x O d x  

Therefore the length of c,f is B/A,, which we can make tend to zero by 
choosing A,---> ~ as n---> ~ .  This kind of behavior is likely to be quite 
common for space-times: choosing frames having increasingly large com- 
ponents with respect to a given standard basis makes the components of a 
given vector become increasingly small. The property of possessing, in a 
continuous fashion, a standard basis at each point is called 0.2.7) paraileliza- 
bility. Though rare among manifolds in general, it is quite common for 
simple space-times. We shall take advantage of this property to modify the 
Schmidt metric for the Friedmann two-manifold N, so that the degeneracy 
in fibres over the singular points can be removed. This leads to a separation 
of the initial and final singularities. The particular case for Friedmann 
space-time is discussed in 3.9. First, we give a general definition and prove 
some properties for a parallelizable manifold. We assume our paraUelization 
to be continuously differentiable. Simply connected space-times always 
admit a parallelization if they are space- and time-oriented (see Lee [46] 
and Geroch [27]). 

3.8. A New Bundle Metric for Parallelizable Manifolds. Let M be a 
smooth n-manifold possessing a continuously differentiable parallelization 

p: M - +  L'M: x~-> (P~)x 

where L ' M  is a connected component of L M  with structure group G § 

Proposition 1. Every chart abou tany  x ~ M induces a chart about 
p(x) ~ L'M. 

Proof. By taking if necessary a subchart (U, ~) about x E M, we have 
by the bundle structure (see 1.4.1) a diffeomorphism 

n F . ( u )  = L ' U  ~ U x G + 

We denote by (p,)~ the frame determined by p(y) at y ~ U. Then for 
any g e G + we can find a matrix representation [g~qv(~) for the basis it deter- 
mines at y, by reference to the (p~)v. This gives the desired chart (L'U, r 
by 

�9 p: L'U "~ U x G + - +  R '~ x R '~2 

: (y, (g,'P,)) ~ (Y, g) ~ (r [gj']~(~)) [ ]  

We have done the obvious thing: chosen p(y) as our reference flame 
for T~M, in the fibre liE(y). This implies that ~bv(y,p(y))= (~o(y),I), 
where I is the unit matrix. 
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Plainly, Ov has the same class as p on U. 

Definition 1. Denote by (8~)u the basis for TuM induced for all y ~ U 
by the chart (U, ~o) and denote by (Aj~)g the basis induced for ToG § by the 
coordinatization 

G + --> R "2 : g ~ [g~]v(~) 

Then the basis ((~)~, (A/)0) is induced for T(u,g)L'M by the chart (L'U, ~bp). 
The vertical form for L ' M  with selection p is the map 

fi: TL 'M ~ ~.2 

: (~0(y), [g/lv(u), A'8i, BjAs~)~-> [BJ][gji];~) 

Remark. This map is independent of  the choice of  chart (U, 9) and 
it is linear on each tangent space T(~.g)L'M. Also i f p  is of  class C ~ for some 
k > 0, then/~ is of  class k - 1. The algebraic dependence of /~ on p is 
considered next. 

Proposition 2. Suppose that q: M - + L ' M  is also a continuously 
differentiable parallelization. Then there exists a continuously 
differentiable map 

n2 [aj t] : M --+ R : y ~ [aj*]u 
such that 

O~ o r  = (/, [a/I) 

Proof. By transitivity of  the action of G + on L ' M  we can find a C ~ 
map a: M --+ G § such that for all x ~ M 

q(x) = Ra(~)(p(x)) 

Hence the required matrix field is given by p~ = ak*p,. [] 

Corollary (for which the author is indebted to C. J. S. Clarke). 

#(X) = p(X)  + [A~(e,ak')][a~ ']-~ 
for all 

X = (9(y), [g/]v(y), At~t, BJA/)  ~ TL 'M 

Proof. The derivative of  Oq o qb ~ a is the Jacobian 

~za/ a / '  w i t h / =  [3/] [ ]  

Remark. Consider a curve c: (0, 1 ) - + L ' M  which appears in co- 
ordinates via (L'U, Or) as 

O, o c: t~-> (c~(t), [g/lt), for c(t) s L 'U 

with tangent vector field 

e: t ~  (c'(t),  [g/]~, ~'(t), [g / ]3  

The vertical form gives a logarithmic measure of  vertical velocity: 

p(e)  = [~t/][g/] -~ 



482 Dodson 

It is precisely this feature that prompts the following modification of the 
Schmidt metric given in II. 1.1. 

Definition 2. The modified Riemannian metric on L 'M is (see II. 1.1) 

( , )~: TL'M x TL'M ~ R: (X, Y) ~ (X, Y )  + p(X) .p(Y) 

where (X, Y) = O(X). O(Y) + co(X)-o~(Y) is the Schmidt metric and �9 is 
the standard inner product on R ~ and R "2. Clearly ( , )p is well defined 
and a Riemannian metric tensor field on L'M. Let d~ be the topological 
metric induced on L 'M by ( , )p via its norm II I1 . Evidently, ( , )~ has 
the same class of differentiability as/~, which is governed by the class of 
parallelization. 

Proposition 3. (i) I f  we replace the standard inner product �9 on 
R ~ and R ~2 by any other inner products, then the ensuing metric 
structure is uniformly equivalent to that given by dp. 

(ii) For all g E G + the right action R~: L ' M -+ L 'M is uniformly 
continuous on (L'M, dp). Hence Rg has a unique uniformly contin- 
uous extension to the Cauchy completion (L'M, a~p) in which 
(L'M, dp) is dense. 

(iii) The topological space TL'M/G + = _~r is well defined, and 
we shall call SM = ~r \M the p-boundary of M. 

(iv) If  the connection on L M  is the Levi-Civit~t connection of 
some metric g, then we can replace G + by 0 + and work with O § M 
and obtain bM = (O+ M/O+ )IM. 

Proof. See [15] for details. 
(i) This follows from I1.1.2. 

(ii) This follows from II.l.3 and the observation that for all X ~ TL'M 
and all g ~ G + 

lip o ORo(X)ll0 = II~(X)llo 
(iii) This follows from 1.3.9. 
(iv) This follows because ff is essentially unaltered by passing to a 

subbundle. [ ]  
We defer a detailed study of the p-boundary, merely noting immediate 

properties in the following two propositions and thereafter describing the 
new criterion for completeness in Definition 3. Geroch [27] proved that a 
space-time admits a parallelization p if and only if it admits a spinor struc- 
ture for which K. K. Lee [46] has shown that embeddability in ~6, or simple 
connectedness with space- and time-orientability is a sufficient condition. 
That may throw some light on the naturality of our new construction. 
Beem [3] pointed out that b-completeness remains a stronger condition than 
geodesic completeness, even for the restricted class of globally hyperbolic 
space-times. It will have to be seen how p-completeness compares. 
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We shall denote by I/z, the projection induced by the factorization of  
L ' M  by G +. The topology on )Q = L'M/G + is such that II z, is continuous. 
We find the following. 

Proposition 4. 
(i) G + acts transitively on fibres of  L'M. 

(ii) 1Ii:. is an open map. 
(iii) The fibres of ~ ' M  are complete with the induced metric. 
(iv) The fibres of  L ' M  are homogeneous spaces. 

Proof. These results follow immediately from the proofs given in 
II.2.1-11.2.4 and Proposition 2 in Section 3.7. [ ]  

Proposition 5. Holonomy bundles generate the same p-boundary 
for space-times. 

The results corresponding to 111.2.7 and 111.2.8 hold for our 
new structure: 

(i) If  x ~ ~M is determined by a Cauchy sequence (v,) in L'M, 
then this x is equivalently determined by a Cauchy sequence (u~) 
on a horizontal curve in L'M. 

(ii) The holonomy bundle through any point in the frame 
bundle determines the same p-boundary as the frame bundle itself. 

Proof. (ii) follows from (i), and 111.2.7 establishes (i). [ ]  

Definition 3. We can now modify our criterion for completeness of M 
via the following (see II.3.9). 

(i) A curve c in M is said to have finite p-length if it has a horizontal 
lift c* of finite length in (L'M, ( , )p). As before, this is independent of  the 
choice of  point in IIg(c) through which the lift is effected. 

(ii) A curve c: [0, 1 ) ~  M is called p-incomplete if it has finite p-length 
and admits no continuous extension in M to domain [0, 1]. Again, the 
definition extends trivially to any piecewise-C ~ reparameterization of the 
curve. Therefore, the p-boundary consists precisely of the endpoints in kTr 
of  p-incomplete curves in M. 

(iii) M is called p-complete if it contains no p-incomplete curves, that 
is if 0M = 0. 

3.9. Eliminating Degeneracy of Friedmann Fibres. We have shown that 
a Friedmann space-time is parallelizable by the existence (see 3.1) of  the 
smooth section 

1 
PM: M--', O+M: (4, o, 0, ~)~-~ ~ [8~, ~ ,  (sin ~)-18o, (sin 0 sin ~)-10~] 

where the obvious coordinate singularities can easily be avoided. Hence 
/ ~  and l[ [[~ are well defined on O+M by 3.8. 
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Similarly, the first two terms o f p u  give a smooth section PN of O+N, 
and here we find (see 3.1, 3.7) 

( 1p]a 1 ,) 
PIN: TO+N -+ R"2: ~b, ~, L(X) ~ Oo '-R X'O,, -R Bj O, v+ [Bj'I[L(x)1-1 

where 

and 

o + N =  ~,~,L(x) 0~ 

[cosh X sinh X ] 
L(X) = [sinh X cosh X] 

We recall from 3.1 the smooth injection h: O+N---~ O+M and observe that 
h o PN = Pu; also we have the counterpart of Lemma 3.3. 

Lemma 1. I[ YII~N = IIDh(Y)II~, for all Y ~ T O + N .  

Proof  The map Dh takes the form (see 3.3) 

Dh: (x, [b/], [X'], [Bj ' ] )~ (x, Yo, [bBq, [X'], [O ] ~1) 

Therefore for Y e  TO+N, for some X e R, 

fN(Y) = [B;I[L(X)]-I 

f ~ ( D h ( , ) ) =  [~ ;  00 ] [L (0X)~] - l= f~ ( r )  

But from Lemma 3.3, II YIlN = IIDh(Y)H~, so the result follows. �9 

Remark. We continue to follow 3.3 and obtain an expression for the 
arc length formula of the new metric ( , )~N for O+N. For any curve 

c: [a, b] --~ O+N: t~-> (c~(t), c2(t), L(x(t))) 

[0 ~] w h e r e 2 = d x  
= 2 1  ' d7 

This matrix is of course independent of R, and we note that it was one of 
the three matrices in 3.3 that summed to give to(d). Hence we have ]Idling, 
and the arc length formula is simply 

ds~ 2 = ds 2 + dx 2 

where ds 2 is the expression in 3.3 for the arc length from ( , ). 

we have 
PW) = [L(x)][r~(x)] - ~  
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Lemma 2. We use p to denote pN when no confusion arises. 
O) sl: •--+ O+N: n~--~ (~b,, ao, L(0)) is Cauchy on (O+N, d~) if 

~b, --~ 0, for  any fixed ao ~ S 1. The limit o f  sl in O + N  lies in the 
fibre over ~b = 0, a = a0 in ON. 

(ii) The fibres over ~ = 0 are not  degenerate. 

Proof. (i) This follows f rom the fact that  sl eventually lies on the 
curve c in 3.4, and since 2 = 0 on e 

d~,(sl(n), sl(k)) --+ dn(sl(n), sl(k)) ~ 0 as n, k -~  oo 

(ii) Suppose that  the fibre over ~b = O, cr = a0 is degenerate. By (i), 
the sequence 

s 1: N .-->- 0 +N: n ~ (~b,,, go, L(Xo)), Cro, Xo fixed 

is Cauchy  if  ~b~--~ O. Moreover ,  bo th  lira s 1 and lim sl lie in the fibre o f  
O + N  over ~b = O, a = %. By hypothesis alp(lira sl, lim s 1) = O; so 

lim sl = lim s x 

Hence we can find a sequence o f  curves c,,: [0, 1] ~ O+N such that  

c . (o)  = s l(n) ,  c . ( 1 )  = 

Therefore we must  have, as n -+  0% 

o(o.) o, o, 

[Io 0)11  dt O 

- *  o 

We were able to satisfy the first two o f  these conditions in 3.5. But f rom the 
preceding remark,  ~(0,) --~ 0 if and only if  :~, --~ 0. A n d  that  is possible for  
the functions )?, only if  0r - x,( t ' ) )  -+ 0 for  all t, t '  E [0, 1]. Hence we 
require Xo = 0. But lira s 1 exists for  any Xo E •, so the fibre over ~b = 0, 
a = ao is no t  degenerate. [ ]  

Corollary. In  the closed Fr iedmann submanifold N the fibres over 
the final singularity are not  degenerate. In  consequence the initial 
and final singularities do not  have c o m m o n  points in thep-boundary .  

Proof  The first par t  is clear enough, f rom our  definition o f  closed 
Fr iedmann space-time. 

For  the second par t  we consider the no rm o f  the tangent vector to an 
arbi t rary curve c in O+N: 

l l e i l ~ = R  2 ( ( 0 1 ) 2 + ( ~ 2 ) 2 ) c o s h 2 x _ 2 e ~ e  2 s i n h 2 x  + 0 2 + 2  + ( 2 )  2 
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Suppose that the initial and final singularities have a common point in 0N. 
Then there is a sequence of  curves 

c,: [0, 1] -+ O+N 

and x0, xx E ON such that as n --> 
(i) IIr~ + c,(0) --+ Xo 

(ii) IIo+c.(1) --+ xl 

So (iii) I[e,(t)ll, dt -* 0 

Now, (i) and (ii) imply that 

lim c,1(0) = 0 # 2~r = lim c,1(1) 

since we suppose that lim e,(0) is in a fibre over ~ = 0 and lim c,(1) is in a 
fibre over q~ = 2~r. Hence we cannot have d l tending to the zero function 
as n --+ ~ .  Thus we see from the expression for I1611~ 2 that (iii) is contradicted 
and so no such sequence of  curves exists. �9 

The p-boundary thus far appears to reflect the physical situation in the 
closed Friedmann two-manifold N more reasonably than does the b-boundary. 
Of course, it is not permissible to conclude from the nondegeneracy in 
O+N and the separation of  initial and final singularities in 0N that the same 
is enjoyed by O+M and ~M. For, whereas apN(x,y ) = 0 implies 
d~z~(h(x), h(y)) = 0, the converse may be false. However, in the present 
circumstances it seems unlikely that degeneracy will arise in any of  the fibres 
of  O+M because of  the essential interchangeability of  the three circular 
coordinates ~, 0, ~0. 

3.10. The Topologies of O+N and ~N; b7 is Hausdorff. Here we use 
methods similar to those in 3.6 due to Johnson [38]. The extra vertical com- 
ponent in the norm II compared with ]] ]] has removed the degeneracy 
of  fibres and the part of 0 + N  over ~b = 0 turns out to be a cylinder S 1 • R. 
Hence the projection bN is a circle, with one point for each o ~ S 1. We can 
expect a similar result for the final singularity as well, in the closed Friedmann 
case. 

The vertical component in ]I II~ prevents the vertical sequences with 
constant projection in N from converging to O+N, and so we expect points 
of  ~N to be Hausdorff separable from points of N. This is indeed the case. 

Lemma. The subspace of O+N over ~b = 0 is a cylinder. 

Proof. We adapt some definitions used by Johnson [38] for the Schmidt 
process (see 3.6). Let the essentialp-boundary of N be II~(O+N) where 

O + N = ~lim c( t ) ~ O + N I c : [ q, t2) --+ O+Nis  inextensible, finite, 
L t ~ t 2  "x 

with c~(t) not bounded away from zero~ 
) 
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We take the definitions o f  Po and Co for Cro ~ S 1 f rom 3.6. The technique is 
to show that  O+N is homeomorph ic  to S 1 x N. First consider the map 

fo:  S 1 ~ Po: eo ~-~ lim (if, ~o, 0) 
1//-* 0 

It is surjective by construction. We prove that  it is injective. Suppose 
co, el s S ~ are such thatfo(eo) = fo(~h). Then there exists a sequence ~ ~ 0 
and a sequence o f  curves 

A~: [0, 1] --~ O+N: t~--~ (A~(t), A,2(t), A,(t)) 

such that  A~(0)= (r ao, 0), an ( l )=  (r ~ ,  0) and satisfying the length 
condit ion 

imf I [[A.(t)[[, d t  = 0 
n cod 0 

I f  eo ~ oh, then we cannot  have ~2__~ 0. Now, by inspection of  the form 
of  II [Iv in 3.9, Lemma 2, we see that  our  length condit ion on the A~ certainly 
fails if  2~ does not  tend to zero. But then we have by positive definiteness 

~ IL / nl - +  0 

So we may conclude that  eo = ~1 andJo  is injective. 
We can find a similar bijection fx for any fixed X ~ E. Hence we have a 

bijection ( 

f :  S 1 x N -+ 41im (~b, ~r, X)[(e, X)6 S I x N~ 
k ~ - ~ o  ) 

:(~, X)~-~ lira (~, e, X) 
~ 0  

We show that  this is continuous. Suppose that  

s: N -+ S~ x ~:  n ~+ (~n, X~) 

is convergent,  in the standard topology,  to (Co, Xo). We shall prove that  
f o  s is convergent to f ( % ,  Xo) in O+N. 

Let t .  = [cr. - ~o[ z;2, which by convergence of  s is convergent to 
0 e N and which for  all large enough n we may suppose lies in (0, 2~r). We 
join the point  (t., Oo, Xo) to (t., crn, X-) by a curve c.  = l . . k .  for  each n as 
follows: 

k~: [0, 1]--~ O+N:  t~+(t , ,  [a, - ~olt + ~o, xo) 

1~: [0, 1]--~ O+N: t~->(tn, ~IX~ - xolt + xo) 
Then 

t A~ = d~((tn, ~o, Xo), (t~, ~n, x~)) ~ ]lkn(r + IIln(t)ll, dt 
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Evaluating the norms we find, with Rn = R(t.), 

Since 

Do&on 

An~< 1:o x(Rn(cosh 2Xo)1/2 + ~n n) Icrn-- r 21/2]Xn-- Xol dr[ 

R .  ~ t .  ~ for  some p > 0 as n - +  oo since t .  --> 0 

R~/R. ~ I/t~ = [~.- ~o[ -~'2 

we m a y  conclude tha t  An --~ O. Therefore  f is cont inuous  because 

lira f o  s(n) = l im (t., go, Xo) = f(~o,  go) 
n~ co tn~O 

Now we show thatf(S I • R) = O+N. Suppose that 

c: [tl, t2) "--> O+N: tF--> (cl(t),  c2(t), x(t))  

is an  inextensible finite curve defining a point  o f  6 + N .  F r o m  the fo rm o f  
the  n o r m  and the finiteness condi t ion on c we cannot  have x(t)--> oo as 
t---> t2; likewise we cannot  have c2(t) cycling infinitely a round  S L  Hence  
there must  exist l imiting coordinates  

% =  l imc2( t )  and Xo = l i m x ( t )  
t....~t 2 ~-~t 2 

Then the same argument as for the continuity off shows that r defines the 
same point of O+N as the radial curve 

Co: t ~-+ (t, ~o, Xo) 
Hence  

l im c(t) = lira (t, %, Xo) = f (*o ,  Xo) 
t~t a t~O 

which cstablishcsf(S ~ • R) = O+N. 
Finally, f is a homeomorphism because 

f-l: O+N_+SI x R: lira (~, ~,X)~+(~, X) 
~0 

exists and is continuous. �9 

Corollary I. The p-boundary of the Fricdmann two-manifold N 
(nonclosed) is I IS (O+N)  - S 1. �9 

Corollary 2. For  all points  xo ~ bN, if  xx e N then x~ can be 
Hausdor f f  separated f rom Xo. 

Proof. F r o m  the l emma,  if  xo E ~N then we can find (~o, Xo) e $1 x R 
such tha t  

~7o = l im (t, %, Xo) ~ II~(Xo) t--*0 
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Let xl ( if1, al) ~ N; then we know that r > 0. 
It is sufficient to show that 

d~(~o, n~(xl))  > 0 

But this must be so because any curve 

c: [0, 1) --> O+N: t~-> (cl(t), e~(t), x(t)) 

with c(t)--~ 2o as t ~ I, while el(0) = ~bl > 0 must have 61 a nonzero 
function. Hence II l[  will not be the zero function for any curve from the 
fibre over (r al) to the fibre over x0. The presence of the vertical term due 
to p in II Ilp prevents our using arbitrarily high horizontal lifts of null curves 
to achieve zero length in the limit, as was possible in the Schmidt metric 
(see 3.7.3). I 

4. THE PRESENT EDGE 

In this section we close our account with some notes on the position 
as it appears after the Eighth International Conference on General Relativity 
and Gravitation held in August 1977 (see GR8 Abstracts [31]; the contribu- 
tions on singularities are scheduled to appear in the Journal of  General 
Relativity and Gravitation). 

4.1. Summary. The theorems of Hawking and Penrose had indicated 
the likelihood of incomplete geodesics in realistic space-times under very 
general conditions. For example, they did not depend on particular sym- 
metries, and they used only the attractive character of gravitation, not 
Einstein's equation. The Schmidt bundle completion had shown considerable 
promise in topologizing singularities in an elegant way, and Clarke had 
begun to reveal that generally there are curvature anomalies associated with 
boundary points. Then Bosshard and Johnson provided details of non- 
Hausdorff behavior in Friedmann and Schwarzschild space-times. Though 
such behavior had already been anticipated by Schmidt, it nevertheless 
raised queries about the physical significance of the b-boundary. Two avenues 
of development were pursued: modifications to the b-boundary to improve 
separation properties and classification of singularities in a way compatible 
with their definition via the b-boundary and its likely modifications. We 
give some details of these developments in Section 4.2, concentrating on 
geometrical aspects. 

We saw in 3.8 the p-boundary ~M that is available for space-times 
having a parallelization p: M ~ LM. It derives from augmentation of the 
Schmidt metric by an extra vertical component and retains several of the 
good features of the b-boundary 8M while avoiding some unwanted identifi- 
cations. A different modification devised by Clarke (see [31], p. 22) uses a 
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secondary completion to remove certain identifications in the b-boundary. 
Clarke had expressed the view that the Schmidt metric was basically right 
but that the process of constructing the boundary from it involves the 
interior of the space-time instead of concentrating on its edge. To remedy 
this he used the projective limit topology (see Kowalsky [42], p. 273) on 
b-boundary closures of sets V~ with compact complements in M. Hence he 
constructs the essential b-boundary 8"M, an account of which is given in 
4.4 and wherein we find justification for the name. The required separation 
properties are achieved. Also, the fibre over x ~ 8*M degenerates to a point 
i f  x has generally singular curvature; this happens if there is a horizontal 
curve on which it is impossible to write the curvature tensor R as R 1 + R 2 
with R 1 bounded and R 2 not exceeding the necessary symmetries. Then if 
x and y are distinct in 8*M with generically singular curvature, these points 
are Hausdorff separated (see [31], p. 22). Marathe (see [31], p. 243) discussed 
the alternatives ~M and 8~ and drew attention to his earlier work [48] 
on paracompactness which leads to a theorem on the metrizability of space- 
times. We see in 4.3 that he uses a bundle section to construct a topological 
boundary which is more or less that of Schmidt or Sachs. Marathe observed 
that Clarke's construction of the projective limit topology for the completion 

M ~ = M  ~ 1 7 6  w i t h M  ~ 

is similar to his own method of metrizing M, for Clarke's V, corresponds 
to the projected interior of certain K~, of which a component of LM is a 
countable union (see 4.3). This similarity remains to be exploited, but what 
we have at present are the proofs (see 4.4) of the following statements. 

(i) M ~ is dense in M. 
(ii) Every x ~ ~*M is Hausdorff separated from any y ~ M ~ 

(iii) "Intuitively separate" points are not identified in ~~ 
(iv) Those points in ~M without correspondents in ~~ lie at the end 

of a curve partially trapped in some compact set. 

Hence we have a satisfactory answer to the difficulties encountered with the 
b-boundary and a firm position from which cross links can be forged to the 
classification scheme (4.2) for singularities. We mentioned a sufficient condi- 
tion for a fibre over ~~ to be degenerate ([31], p. 22), but we do not yet 
know what is necessary. However, it seems unlikely that a manifold structure 
will be available for the completion in general. 

The consensus at GR8, on requiring some bundle section over and above 
the connection to effect a completion, was that though many reasonable 
cosmological models admit such sections (see Lee [46] and Geroch [27]) 
there remained considerable arbitrariness in choosing among the sections. 
However, it was felt that there was advantage in having such alternatives 
because of the diversity in singularities and the desirability of having a 



Space-Time Edge Geometry 491 

range of techniques for their investigation. Certainly, in particular situations 
there may be distinguished sections, derived from matter fields for example. 
tt would be useful to have detailed calculations of different boundaries for 
comparison; more generally, we need to know when different sections give 
homeomorphic completions. 

A scheme of classifying singularities has been put forward by Ellis and 
Schmidt [24] (see [31], p. 367) which we outline in 4.2. It supersedes the 
earlier version in [35] and the more field-theoretic approach of Borzeszkowski 
and Kasper [6]. King ([31], p. 27) discussed the instability of whimper (cf. 
Ellis and King [23]) or nonscalar singularities, where no curvature scalars 
are badly behaved. Siklos ([31], p. 31) refuted the claim of King and Ellis 
[40] that whimpers are stable and he commented on their classification. 
Clarke ([31], p. 22) remarked on the likelihood of boundary points being 
curvature singularities, and Tipler [63] (see also [31], pp. 32-34) gave bounds 
on the growth of curvature near singularities. He also extended the rigorous 
definition of a black hole to space-times that are not asymptotically flat 
(see [31], p. 221) and gave results on singularities and causality violation 
(see [31], p. 34). The latter reinforce the general impression [35] that causality 
violation is insufficient to prevent the formation of singularities in gravita- 
tional collapse. Tipler claims that if a closed universe contracts and then 
reexpands because of causality violation, then the "bounce" must be accom- 
panied by singularities. Furthermore, a space-time with causality violation 
can be singularity-free only if the causality violation begins in matter-free 
regions. 

More unusual lines of inquiry are the distributional approach to the 
geometry of singularities by Parker [49] (see also [31], p. 383) and the 
algebraic computing techniques of Campbell and Wainwright [9] (see also 
[31], p. 19). The latter gave a list of 14 computable polynomial curvature 
scalars and studied them near singularities. Scalar polynomial invariants 
are independent of coordinates; however, there exist nonzero curvature 
tensors for which all scalar polynomial invariants vanish (cf. [35], p. 260). 
Thorpe [62] addressed this problem and investigated observer-dependent 
curvature invariants (see [31], p. 334), which are scalar functions on the 
unit timelike bundle (see 2.1). These carry direct physical information and 
throw some light on whether a singular occurrence is tidal (physical forces 
experienced), matter, or conformal (Weyl tensor misbehaves), for example. 
It turns out that a timelike curve of bounded acceleration, which could 
therefore be followed by an observer, runs into a parallel propagated curva- 
ture singularity (see [35] and 4.2) if and only if some observer-dependent 
curvature invariant is unbounded along the curve. We should point out for 
nonphysicists that the notion of "observer" has a precise mathematical 
definition, as for example in [53] or [16]. 
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There have been some recent developments of earlier boundary con- 
structions, and we can introduce them by recalling the following. Hawking 
[33] and Geroch [28] used equivalence classes of incomplete geodesics to 
construct the geodesic boundary or g-boundary. Also, the analysis by Kron- 
heimer and Penrose [43] of causal structures led to the causal or c-boundary 
of Seifert [58] and to the ideal points of Geroch, Kronheimer, and Penrose 
[30]. These constructions were discussed by Hawking and Ellis [35], who 
concluded that the b-boundary was better. Recently, Beem [1] discovered 
conditions for the stability of causal structures under perturbations of the 
metric. In particular, if for each compact subset K of space-time (M, g) 
there is no future inextensible nonspacelike curve that is totally future 
imprisoned in K, then there is a conformal factor e" such that every non- 
spacelike geodesic of (M, e2~g) is complete. Next, Beem [2] compared time- 
like Cauchy completeness and finite compactness and found them to be 
equivalent for globally hyperbolic space-times. Moreover, both of these 
forms of completeness are equivalent to the following: every inextensible 
future [past] directed geodesic starting in the chronological future [past] of 
x ~ M has points at arbitrarily large distance from x. Woodhouse [64] 
observed that the study of zero rest mass fields focuses attention on conformal 
properties of space-time whereas the projective structure is pertinent to 
massive fields (see II.1.5), but the time-ordering of events is more primitive 
than either. Hence he devised a chronological boundary and compared it with 
the causal boundary [58]. Subsequently Woodhouse [65] applied Morse 
theory to geodesics and obtained a link between the causal and curvature 
structures of stably causal, globally hyperbolic space-times. 

It was an early result of Geroch [26] that topology change cannot occur 
in a compact region without violation of causality in the form of closed 
timelike curves. We note a few recent additions to this work. Tipler (see 
[31], p. 34) reports that topology change cannot occur at all in a compact 
region if the null convergence energy condition (cf. [35], p. 95) holds. Thus 
topology changes imply singularities. Two related theorems have been 
proved by C. W. Lee [45]: closed and bounded parts of space cannot change 
topology in timelike and null geodesically complete space-time; the result 
i s unaffected by allowing the bounding two-manifold (of the part of space 
in question) to evolve with time. Also, Lee proved a series of theorems on 
parts of spacelike hypersurfaces enclosed by uniformly convex three-spheres 
(see [44] for outlines of the proofs and [45] for details). The enclosed part 
must be compact and simply connected, and the nonenclosed part is non- 
compact in null and timelike geodesically complete space-times subject to 
the null convergence energy condition (see [35], p. 95). It is known (K. K. 
Lee [46], [47]) that no compact space-time can be simply connected and 
indeed every such space-time has closed timelike curves. Now K. K. Lee 
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[47] has derived upper bounds on the first and second Betti numbers of 
space-times having Cauchy surfaces with Abelian fundamental group; 
hence he obtains a homological classification of space-times with compact 
Cauchy surfaces. 

For lack of space we cannot do justice to the new results on the physics 
of particular, singular space-times, but we offer some notes on the work 
reported at GR8. Collins ([31], p. 23) described the behavior of matter 
variables in some singular cosmologies. Surprisingly, the energy density 
need not be infinite at a conformal singularity, where only the Weyl tensor 
has unbounded components in an orthonormal frame. Results for spatially 
homogeneous cosmologies were reported by Ellis ([31 ], p. 367) and for Bianchi 
space-times by Shikin ([31], p. 29). Various singular behaviors were demon- 
strated by King ([31], pp. 26-27) using stationary cylindrical symmetry in 
dust-filled space-times. Liang ([31], p. 28) discussed the irrotational collapse 
of dust, Kegeres ([31], p. 210) included rotation, and Datta ([31], p. 126) 
described the collapse of perfect fluids. 

Finally, mathematicians may regret the nonappearance of applications 
of catastrophe theory to a seemingly ripe topic. In fact this kite was flown 
by the organizers of GR8 in their preliminary program, but in the event no 
papers were forthcoming. The field is open. 

4.2. Classification of Singularities. Here we outline the scheme pro- 
posed by Ellis and Schmidt [24] (see also [35], p. 367). Suppose that x is a 
point of the b-boundary ~M of (M, g). Then the following classes arise. 

(i) x is a C r regular boundary point (r >1 0-)  if there is an extension 
(see [35]) of space-time to (M', g') such that the Riemann tensor exists and 
is C ~ for (M, g) and x is an interior point of M' .  

Otherwise x is a C ~ singular boundary point. 
(ii) x is a C T (or C r-) curvature singularity (r >1 O) if, for some curve c 

with endpoint x, at least one component of the rth covariant derivative of 
the curvature tensor, with respect to a parallel propagated orthonormal 
basis along c, is not continuous (or C~ Such an x is a singular boundary 
point in the sense of (i) and was termed a p .p  curvature singularity in [35]. 

(iii) If  x is a singular boundary point but not in the class of (ii), then 
it is a C ~ (or C ~-) quasi regular singularity (r >~ 0). An example is the vertex of 
a cone. These types were called locally extensible singularities in [10] and [23]. 

(iv) If  x is a singular boundary point at the end of a curve c on which 
some polynomial scalar field constructed from rth covariant derivatives of 
the curvature tensor is not continuous (or C~ then x is a C ~ (or C ' - )  
scalar singularity. These were called s.p curvature singularities in [35]. They 
are necessarily C ~ (or C ~-) curvature singularities, as in (ii), because the 
choice of basis field along c is irrelevant, provided that it is CL 
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(v) I f x  is a curvature singularity but not a C r (or C r-)  scalar singularity, 
then it is a C r (or C ' - )  nonscalar singularity. These can coincide with the 
intermediate singularities of [10] and [23]. 

Ellis and Schmidt gave examples of these types. They also observed that 
we may wish to distinguish among curvature singularities: 

(a) matter singularities, when the Ricci tensor causes the problem and 
(b) conformal singularities, when the Weyl tensor is at fault. 
(~) divergent singularities, when the relevant components are unbounded 

and 
(fl) oscillatory singularities, when the relevant components are bounded. 

Their scheme could easily be adapted to refer to other boundaries for space- 
time, and though it is intended only for boundary points at "finite distances" 
from ordinary points, they claim it can be extended to cover those "at  
infinity." 

Clarke [10] has shown that typically a point x on the b-boundary will 
be a curvature singularity, if it is accessible on a timelike or null curve (see 
also [11] and [31], p. 22). His theorems remain true for a continuous metric 
tensor with bounded weak derivatives and bounded curvature tensor, but 
as he says, we are not yet able to conclude that all boundary points are 
curvature singularities in the Ellis and Schmidt sense. Clarke and Schmidt 
[13] gave a survey of rigorous results and displayed just what kind of  ob- 
struction a space-time singularity is to the extension of the space-time 
through its boundary and how it can be studied. They distinguished between 
true singularity theorems and the incompleteness theorems of the Hawking 
and Penrose type. An example of  a singularity theorem of the new type is 
the following, from Clarke [10] (see also [13]). 

Theorem. Let (M, g) be a globally hyperbolic space-time with g 
of class C 2- and suppose we have x ~ ~M such that (i) x is a C 2- 
singular boundary point; (ii) x is the future endpoint of some 
time-like curve. Then x is a curvature singularity, provided that a 
certain generality condition (non-D-specialized; see [10], p. 68) 
holds. [ ]  

So, if the endpoint x ~ ~M of a timelike curve obstructs a C 2 - extension 
of curvature through the boundary, then we can expect that on some curve 
ending at x the curvature components in a parallel propagated frame have 
no limits. We now have some idea of how this can happen in general because 
Tipler [63] (see also [31], p. 32) found constraints on the rate of growth of 
the Ricci curvature near a singularity. He showed that Rtt cannot grow faster 
than t -2 near a singularity in any physically realistic space-time, and Rtt 
must grow at least as fast as t -  1 near a curvature singularity in a conformally 
flat space-time. 
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4.3. Completion via a Bundle Section. We studied the p-boundary 0M 
for parallelizable space-times in 3.8-3.10 and found that it removed the 
separation difficulties encountered in the Friedmann sub-space-time by 
Bosshard and Johnson, while preserving the expected geometry of the 
completion. More generally, for a given parallelization p, the new metric 
for L'M is essentially unique, and like Schmidt's/:'M, the completion ~ 'M 
it provides consists of fibres that are complete, homogeneous spaces. Again 
holonomy bundles generate the same p-boundary because boundary points 
of L 'M are always accessible on horizontal Cauchy sequences. So most of 
the good features attributable to the b-boundary persist for 8M. The main 
disadvantage is in having to decide which parallelization to use, in the 
absence of some physical guidance such as a matter field and some results 
on the equivalence of sections in the construction. It is possible, however, 
that only very close to a singularity will the choice of paralMization affect 
the completion. 

The work of Marathe [48] was previously unknown to those occupied 
with space-time boundaries. However, Marathe used the Schmidt metric, 
more or less, to establish the paracompactness of a frame bundle in the 
process of proving the following result, which also uses a global section. 

Theorem. Let LM have structure group G; H is the closed sub- 
group of G that leaves invariant a given nondegenerate quadratic 
form, and E is the associated bundle of LM with fibre G/H. Then 
M is metrizable if E admits a section. (We want M Hausdorff and 
connected.) 

Outline of Proof(see [48]). Consider one component L'M. It is locally 
compact and paracompact, so it can be written (see 1.2.6) as a countable 
union of compact sets K~ such that for all n 

K~ c i n t  K~+I 

Each K. is metrizable and hence so is IIL,(K. ). 
Now, IlL, is open (see II.2.2), and therefore 

Hz,(K.) c int HL,(K.+I) 

SO 

i = U 

is also metrizable. [ ]  

Corollary. (i) M is paracompact if E admits a section (see 1.2.6). 
(ii) M is paracompact if and only if LM admits a connection. 
(iii) M is paracompact if and only if it admits a pseudo- 

Riemannian structure. [ ]  
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In the context of space-times the candidate for H is of course the 
Lorentz group, and Geroch [27] had already shown that a space-time metric 
would imply paracompactness when Marathe observed (see [31]. p. 243) 
that the Cauchy completion of M with the metric from his theorem yields a 
topological boundary. On the other hand, the connection metrics on L M  
and its associated bundles yield essentially the Schmidt or Sachs quotient 
spaces and hence the b-boundary. 

4.4. The Essential b-Boundary. (This section was written in collabora- 
tion with M. J. Slupinski and based on notes supplied by C. J. S. Clarke in 
amplification of a construction proposed by him; see [31], p. 22.) 

4.4.1. Introduction. We suppose that M is a noncompact space-time. 
For any open subsets V1, 112 of M and an isometry 

i: V1---> V2 

we shall denote by 1,'1, 1/2 the b-boundary (not topological) closures and 
will be the induced map. 

We shall use the family 

J = { g  c_ M I M \ V i  s compact} = {V~[~ e A} 

for some index set A. Later we need the partial order ~< defined on A by 
inclusions among the members of J. 

The construction depends on forming a limiting space M ~ from a 
family {M,[a ~ A} of topological spaces such that M, V,, and V, have open 
homeomorphic images in M~ for each a ~ A. Then M ~ contains a dense 
subspace M ~ ~_ M and we define the essential b-boundary to be 

a ' M  = M ' \ M  ~ 

In the sequel, Proposition 1 gives a basis for the topology of M ~  Proposi- 
tions 2 and 3 characterize M ~ and establish its denseness in M "  ; Propositions 
4 and 5 reveal the desired separation properties; Proposition 6 shows that 
points in ~M without counterparts in ~ ' M  lie at the end of curves partially 
trapped in some compact set and that points in ~M arising only from trapped 
curves have no correspondents in ~~ 

4.4.2. Preliminaries. For any V~ ~ J denote by M~ the disjoint union 
of M with V,, with topology generated by their disjoint topologies as sub- 
basis. Then M, V~, and F~ have homeomorphic inclusions in M' .  Now 
construct the family {M~Ia ~ A} as follows. 

Definition. M ,  = M'/ , ,~ ~, a ~ A, where ~~ is the equivalence relation 
induced on M~ by the inclusion i,: V~ ~ M with x ~ ~ y if and only if one 
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of  the following holds: (a) x = y. (b) x = i~,(y). (c) i . (x)  = y. We choose 
for each M~ the coarsest topology that supports continuity of  the projection 

p~: M~ -+ M~: x~--~ [x]~~ 

It follows that p .  restricts to each of  M, V., and V~ as a homeomorphism, 
so p~,V,~ sits in p~V~ in just the same way that V~ sits in V~. 

Given any V., VB ~ J with V. ~ Vs (so ~ ~< fl), we can construct a 
map from M.  to M s as follows. For  tz = a or fl we have 

?~, a homeomorphism of  V u into M s 

ms, a homeomorphism of  M into M s 

We also have the inclusion maps 

i~:  V~-~ V B and j~s :LV,~- -~LVa 

It is easy to extend these to give 

J~B : L V~ --.'- L V B : Lira (x.) ~ Lim (j~Bx,~) 

1-~B: V~ -+ Vs: [(x.)]o ~+ [(L~x.)]~ 
where 

[(x.)]a = {/~ Elm (x.)[(x.) is Cauchy on LV~, h ~ G} 

Since it preserves limits of convergent sequences because J~s is metric de- 
creasing, ]~B is continuous. But it need not be injective, for two fibres in 
f~v~ may be sent to one fibre in/~VB. Consequently [~B need not be injective. 
However, the projections 

II~:/.V~ --~ V.: Lim (x.) ~--~ [(x~)]a 

17~: ]ZVs -+ Vs: Lim (x.) ~+ [(x.)]a 

are open, so z~s is continuous. For  if U is open in Vs, then 

i~e" U = II~L;-(II~'- U) 

is open in V~. 
Now we define the required map from M~ to M a by the following 

compositions: 

such that 

p.e(x) = f f s  o i-.e o f ;  l (x)  i f x  e ?=(V~) 
l.tn~ o rn~" l(x) if x e m . ( M )  

Though not necessarily injective, the map P~B is continuous by the continuity 
of its constituents. We observe, however, that boundary points of V~ may 
be sent to internal points of V s. 
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The Partial Ordering of A. The index A is decreasingly filtrated because 
for all a,/3 E A we can find t~ ~ A with tz ~< a and t~ ~</3. This follows f rom 
the fact  that  J u ~ is a topology for M, and so 

v~, V e e J  ~ v ,  = V~ c~ V e e J  

We note that  ~< is only a partial order on A;  so it is reflexive, antisymmctric,  
and transitive; but  arbitrary pairs t~, A f rom A may satisfy neither tz ~< Z 
nor  A ~</z. 

4.4.3, The Projective Limit Space M ' .  We follow Kowalsky [42], p. 
273, and define 

M "  = lim proj {M~, a e A;  P.e, ~ ~</3 ~ A} 

to  be the set o f  all sequences (x~)~A satisfying (a) x~ e M~ and (b) if  a ~</3, 
then p~(x~) = x e. We take as topology for M �9 the coarsest that  ensures 
continuity of  all projections 

xa:M--+Me:(x,),~a~-->xe, /3eA 

Evidently, if a ~</3, then 

Xe = P~e o Xa 

Lemma. Suppose that  U is open in M �9 because for some open 
V___ M e we have U = Xe'-V. Then if a ~</~, we can find open V' _ M 
with U = X~*-V'. 

Proof. The  identi ty Xe~-= X,'- ~ P~-e allows the choice 

V ' =  p , ,~ -V  [ ]  

Proposition 1. The collection 

T = {X~'- V ___ M � 9  Vis open in M~, a ~ A) 

is a basis (not  just a subbasis) for the topology on M �9 

Proof. Consider  any finite collaction o f  open V~ ~ M~,, k = 1 . . . .  , n, 
giving rise to the following members of  T: 

u ,  = x~,'- v ~ , .  . ., u ,  = x~ ~ v~. 

We proceed to show that  ( '~=1 U~ is also a member  o f  T. 
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Since A is decreasingly fi l trated,  we can find c~ �9 ,4 with c~ ~ % for  all  
k = 1 . . . .  , n. By the l emma  we can find open sets 

V;~ = p . ~ ' - V ~  _~ M~, with Uk = X~'-V;~ 

hence we see tha t  

X~ V~ Xs*- 
g = l  k = l  

But the V~ are  open in M s  and therefore  so is thei r  in tersect ion;  then 

N~=~ u~�9 [] 
Definition. M ~ = Ns~A x s ' ( m s M ) .  

Proposition 2. M ~ consists o f  the  cons tan t  sequences induced  by 
M and  is h o m e o m o r p h i c  to  M. 

Proof. (a) W e  show tha t  

M ~ = {(X~)s~a e M "  I x~ = m~(y) for  some fixed y �9 M} 

Given  (x,)~,~ �9 M ~ then x ,  �9 m ~ M  for  all a �9 A;  so suppose  tha t  we can find 
y, y '  �9 M for  which 

x s = m s ( y )  and x e = m e ( y )  

As  before,  we can f i n d / ,  �9 A such t h a t / ,  ~< a , / ,  ~< 3, and  therefore  

x .  = p~ . (xs )  = pe.(xB) 

Now,  by  definit ion o f  0~,  0~, 

m .  o m g  1 o m,~(y) = m .  o m ;  1 o m e ( y  ) 

So y = y '  because m.  is injective. 
(b) We show tha t  for  all a e A the res t r ic t ion o f  )~s to M ~ is a homeo-  

m o r p h i s m  onto  m . M ,  since we know tha t  me, M is h o m e o m o r p h i c  to M. 
Now,  X.~M o is the restr ict ion o f  a con t inuous  m a p  and  plainly  a bi ject ion 

on to  m s M .  I t  r emains  to  prove  tha t  i t  is an open map.  
Keep  a fixed and consider  any  U �9 T, the basis for  the topo logy  on M ~ 

Then we have 

V = U/ ' - ' ]  M ~ is a typical  set in the  basis for  the induced  topo logy  on M ~ 

U = xB'- W for some 3 �9 A and  some open set W c_ M e  

Since A is decreasingly f i l t rated we can f i n d / .  �9 A w i t h / .  ~< a , / .  ~< 3, and  
by the l emma there exists an open set W '  _c M .  such tha t  

U =  x ~ W '  and V =  x u ~ w ' N  M~ 

We arrive at  X~ by 

Xs = P.s ~ X~ and P u s l m . ~ l  ~ -  ms o m~ 1 
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Hence x , V  is open in m ~ M  because mr o m ;  1 is a homeomorphism. Open 
also will be the image by X~ of  any union of sets from the basis for M ~ 
Therefore, X~IM~ is a homeomorphism. [ ]  

4.4.4. The Essential b-Boundary a ~  We have M ~ a homeomorph  
of M in M*,  so we de fine the boundary 

OOM = M O \ M  ~ 

Then by De Morgan 

a ' M  = U 
~ZeA 

I t  follows that  (x~),~A ~ a * M  if and only if (a) xB ~- m~M, for some fl ~ X 
(by definition) or, equivalently, (b) ]fl E A such that for all ~ <<. fl, x~ r m u M  
(because iffl is chosen by (a), then ~ <~ fl :~ p,Bx~ = x~ r mBM, so x~ r m~M).  

Proposition 3. M ~ is dense in M* .  

Proof. Given any x = (x~)~a E M *  and any open neighborhood N 
of  x, we show that  N n M~ # ~ .  

We need only consider x E a * M  and N of the form 

N = X~'- W, for some fl ~ A 

with W an open neighborhood of x~ in MB, because by Proposition 1 such 
sets form a basis for the topology on M. Therefore we can find some y ~ M 
with mB(y ) ~ W. Hence the sequence 

(y~ = rn~(y))~A e M ~ 

lies in the set N ~ M ~ 

Proposition 4. Any x = (X,)~A ~ a * M  and y = (Y~)~A ~ M ~ are 
Hausdorff  separated in M ~ 

Proof. Since y ~ M ~ we can find a ~ M with X~(Y) = m,(a) for all 
a ~ A. Also we can choose an open neighborhood V of a in M with V com- 
pact. Then for some/z ~ A we have 

V~ = M \ V E T  w i t h a ~ V  u 

Either x~ is in ~V. or not. 
(i) x~ ~ ave, ~ x u ~ m . M .  But m~(a) ~ rn .M also, and m . M  ~_ M is 

Hausdorff.  Hence m~(a) and x~ can be separated by disjoint open sets W, W' 
in m . M .  Therefore x and y are separated by disjoint open sets x. ~ W, x~ ~- W' 
in M. 

(ii) x u ~ aV~ ~ x ,  ~ ~V~.  But ~V~ is open in M~, and by construction 
it does not meet muV, which is also open and contains m~(a). Hence the 
required separation of x and y is effected by the disjoint open sets x~(?a  Va) 
and x~-(m~V) .  [ ]  
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We observe that if V~ E T, so M\V~ is compact; then V. may consist 
of more than one component. However, since M is noncompact, at most 
one of the components of  V. is a member of  T; for if  V~ = V u V' with 
V n V' = ~ and M \ V  compact, then we cannot have M \ V '  compact since 

M = (M\ V) to (M\ V') 

is noncompact. 
We need some formulation of  which singularities among the points of  

{9 V~Ic~ s A} are reasonably expected to correspond to distinct points of  8 *M. 
Then we show that this indeed separates the past and future singularities 
in ciosed Friedmann space-time (see 3.7). 

Definition. We shall say that a ~ 8 V B corresponds to x = (x~)~A ~ 8*M 
i f  and only if x B = a. 

We shall say that a, b e 8VB are intuitively separate if  V B has two disjoint 
components V~, V~ with a e 8V~ and b e 8V~. 

Proposition 5. I f  a, b ~ 8V B are intuitively separate and a, b corre- 
spond to x, y E 8*M respectively, then x and y are Hausdorff 
separated in M *. 

Proof. Since V~ is disconnected, the two components V~, V~ whose 
b-boundaries contain a, b, respectively, are open and closed in V s. Hence 

P = - - t  --IP ~-. V~ c~ 8 Vp ~ so V~ n V B ~.  But --V~ and V~ are open in M B. Therefore 
x and y are separated in M by the disjoint open sets X~*-V~ and X/-V~, 
respectively. [ ]  

This does separate past from future singular points in M for closed 
Friedmann space-time, because there we can take a global spacelike slice 
K that is compact. This leaves the two singular regions in the two disjoint 
components of V = M\K, and M\ V is compact by construction. 

Finally, we consider points of  8M that correspond to no points in 
~ 'M.  It turns out that these are closely related to trapped curves (see II.3.10). 

Definition. A curve e: [0, 1) ---> M is partially trapped in a compact set 
K c M if for all tk < 1 there exists some t > tk with e(t) ~ K. 

Proposition 6. Suppose that p ~ 8M and we denote by oJ ~ A the 
index for V~ = M ~ J, so Vo, = M--. Then we have 

(i) ?o~(P) r x~( M ~ ) :> 3e: [0, 1) ---> M ending at p with e partially 
trapped in some compact K. 

(ii) I f  for some compact K all curves ending at p are partially 
trapped in K, then ?~,(p) r X~o(M*). 

Proof. (i) I f  ?~(p)r X~o(M ~ and no curve ending at p is partially 
trapped in any compact set, then for all/~ ~ A any curve e ending at p remains 
in V, eventually, because M/V,  is compact. But such a curve defines a point 
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x~ e ~ S V ,  for  a l l / z  e A and such tha t  p~x~ -- x B for  all a, f l e  A with  a ~< ft. 
Howeve r , / z  ~< ~ for  al l /~ e A, so this  cont rad ic t s  ~ ( p )  r x~(M*) .  

(ii) I f  ~ ( p )  e x~(M*) ,  then  we can find (x~)~A e M *  with  xo~ = ~ ( p ) .  
F o r  some fl ~ A,  V B = M \ K  for  the given compac t  set K. But  x~ e ~ S V  B 
and  pBo~xz = ro,(P). Hence  some curve in V B ends at  p,  so i t  canno t  be 
par t ia l ly  t r apped  in K = M \  V B. �9 
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